December 2017, 11(6): 1027-1046. doi: 10.3934/ipi.2017047

Some remarks on the small electromagnetic inhomogeneities reconstruction problem

Sorbonne University, Université de Technologie de Compiègne, Laboratoire de Mathématiuqes Appliquées de Compiègne LMAC, 60205 Compiègne Cedex, France

* Corresponding author: Abdellatif El Badia

Received  October 2016 Revised  July 2017 Published  September 2017

This work considers the problem of recovering small electromagnetic inhomogeneities in a bounded domain $Ω \subset \mathbb{R}^3$, from a single Cauchy data, at a fixed frequency. This problem has been considered by several authors, in particular in [4]. In this paper, we revisit this work with the objective of providing another identification method and establishing stability results from a single Cauchy data and at a fixed frequency. Our approach is based on the asymptotic expansion of the boundary condition derived in [4] and the extension of the direct algebraic algorithm proposed in [1].

Citation: Batoul Abdelaziz, Abdellatif El Badia, Ahmad El Hajj. Some remarks on the small electromagnetic inhomogeneities reconstruction problem. Inverse Problems & Imaging, 2017, 11 (6) : 1027-1046. doi: 10.3934/ipi.2017047
References:
[1]

B. AbdelazizA. El Badia and A. El Hajj, Direct algorithm for multipolar sources reconstruction, Journal of Mathematical Analysis and Applications, 428 (2015), 306-336. doi: 10.1016/j.jmaa.2015.03.013.

[2]

H. AmmariM. S Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter Ⅱ, Journal de Mathématiques Pures et Appliquées, 80 (2001), 769-814. doi: 10.1016/S0021-7824(01)01217-X.

[3]

H. Ammari and H. Kang, A new method for reconstructing electromagnetic inhomogeneities of small volume, Inverse problems, 19 (2003), 63-71. doi: 10.1088/0266-5611/19/1/304.

[4]

H. Ammari and H. Kang, Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities, Journal of Mathematical Analysis and Applications, 296 (2004), 190-208. doi: 10.1016/j.jmaa.2004.04.003.

[5]

H. AmmariH. KangE. KimM. Lim and K. Louati, A direct algorithm for ultrasound imaging of internal corrosion, SIAM Journal on Numerical Analysis, 49 (2011), 1177-1193. doi: 10.1137/100784710.

[6]

M. BrühlM. Hanke and M. S Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities, Numerische Mathematik, 93 (2003), 635-654. doi: 10.1007/s002110200409.

[7]

D. J. Cedio-FengyaS. Moskow and M. S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems, 14 (1998), 553-595. doi: 10.1088/0266-5611/14/3/011.

[8]

M. CheneyD. Isaacson and J. C Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101. doi: 10.1137/S0036144598333613.

[9]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393. doi: 10.1088/0266-5611/12/4/003.

[10]

A. El Badia and T. Ha-Duong, An inverse source problem in potential analysis, Inverse Problems, 16 (2000), 651-663. doi: 10.1088/0266-5611/16/3/308.

[11]

A. El Badia and T. Nara, Inverse dipole source problem for time-harmonic Maxwell equations: algebraic algorithm and Hölder stability, Inverse Problems, 29 (2013), 015007, 19pp. doi: 10.1088/0266-5611/29/1/015007.

[12]

A. El Badia and A. El Hajj, Stability estimates for an inverse source problem of Helmholtz's equation from single Cauchy data at a fixed frequency, Inverse Problems, 29 (2013), 125008, 20pp. doi: 10.1088/0266-5611/29/12/125008.

[13]

A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Archive for Rational Mechanics and Analysis, 105 (1989), 299-326. doi: 10.1007/BF00281494.

[14]

P. C. Hansen, Rank-deficient and Discrete Ill-Posed Problems, Philadelphia, PA, 1998. doi: 10.1137/1.9780898719697.

[15]

H. Kang and H. Lee, Identification of simple poles via boundary measurements and an application of EIT, Inverse Problems, 20 (2004), 1853-1863. doi: 10.1088/0266-5611/20/6/010.

[16]

A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025-1040. doi: 10.1088/0266-5611/18/4/306.

[17]

O. KwonJ. K. Seo and J. R. Yoon, A real time algorithm for the location search of discontinuous conductivities with one measurement, Communications on Pure and Applied Mathematics, 55 (2002), 1-29. doi: 10.1002/cpa.3009.

[18]

T. D. MastA. I. Nachman and R. C. Waag, Focusing and imaging using eigenfunctions of the scattering operator, The Journal of the Acoustical Society of America, 102 (1997), 715-725. doi: 10.1121/1.419898.

[19]

M. S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, ESAIM: Mathematical Modelling and Numerical Analysis, 34 (2000), 723-748. doi: 10.1051/m2an:2000101.

[20]

D. Volkov, An Inverse Problem for the Time Harmonic Maxwell's Equations, Ph. D thesis, Rutgers The State University of New Jersey -New Brunswick, 2001.

show all references

References:
[1]

B. AbdelazizA. El Badia and A. El Hajj, Direct algorithm for multipolar sources reconstruction, Journal of Mathematical Analysis and Applications, 428 (2015), 306-336. doi: 10.1016/j.jmaa.2015.03.013.

[2]

H. AmmariM. S Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter Ⅱ, Journal de Mathématiques Pures et Appliquées, 80 (2001), 769-814. doi: 10.1016/S0021-7824(01)01217-X.

[3]

H. Ammari and H. Kang, A new method for reconstructing electromagnetic inhomogeneities of small volume, Inverse problems, 19 (2003), 63-71. doi: 10.1088/0266-5611/19/1/304.

[4]

H. Ammari and H. Kang, Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities, Journal of Mathematical Analysis and Applications, 296 (2004), 190-208. doi: 10.1016/j.jmaa.2004.04.003.

[5]

H. AmmariH. KangE. KimM. Lim and K. Louati, A direct algorithm for ultrasound imaging of internal corrosion, SIAM Journal on Numerical Analysis, 49 (2011), 1177-1193. doi: 10.1137/100784710.

[6]

M. BrühlM. Hanke and M. S Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities, Numerische Mathematik, 93 (2003), 635-654. doi: 10.1007/s002110200409.

[7]

D. J. Cedio-FengyaS. Moskow and M. S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems, 14 (1998), 553-595. doi: 10.1088/0266-5611/14/3/011.

[8]

M. CheneyD. Isaacson and J. C Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101. doi: 10.1137/S0036144598333613.

[9]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393. doi: 10.1088/0266-5611/12/4/003.

[10]

A. El Badia and T. Ha-Duong, An inverse source problem in potential analysis, Inverse Problems, 16 (2000), 651-663. doi: 10.1088/0266-5611/16/3/308.

[11]

A. El Badia and T. Nara, Inverse dipole source problem for time-harmonic Maxwell equations: algebraic algorithm and Hölder stability, Inverse Problems, 29 (2013), 015007, 19pp. doi: 10.1088/0266-5611/29/1/015007.

[12]

A. El Badia and A. El Hajj, Stability estimates for an inverse source problem of Helmholtz's equation from single Cauchy data at a fixed frequency, Inverse Problems, 29 (2013), 125008, 20pp. doi: 10.1088/0266-5611/29/12/125008.

[13]

A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Archive for Rational Mechanics and Analysis, 105 (1989), 299-326. doi: 10.1007/BF00281494.

[14]

P. C. Hansen, Rank-deficient and Discrete Ill-Posed Problems, Philadelphia, PA, 1998. doi: 10.1137/1.9780898719697.

[15]

H. Kang and H. Lee, Identification of simple poles via boundary measurements and an application of EIT, Inverse Problems, 20 (2004), 1853-1863. doi: 10.1088/0266-5611/20/6/010.

[16]

A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025-1040. doi: 10.1088/0266-5611/18/4/306.

[17]

O. KwonJ. K. Seo and J. R. Yoon, A real time algorithm for the location search of discontinuous conductivities with one measurement, Communications on Pure and Applied Mathematics, 55 (2002), 1-29. doi: 10.1002/cpa.3009.

[18]

T. D. MastA. I. Nachman and R. C. Waag, Focusing and imaging using eigenfunctions of the scattering operator, The Journal of the Acoustical Society of America, 102 (1997), 715-725. doi: 10.1121/1.419898.

[19]

M. S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, ESAIM: Mathematical Modelling and Numerical Analysis, 34 (2000), 723-748. doi: 10.1051/m2an:2000101.

[20]

D. Volkov, An Inverse Problem for the Time Harmonic Maxwell's Equations, Ph. D thesis, Rutgers The State University of New Jersey -New Brunswick, 2001.

[1]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[2]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[3]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[4]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[5]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[6]

Jinpeng An. Hölder stability of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315

[7]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[8]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[9]

Luciano Abadías, Carlos Lizama, Marina Murillo-Arcila. Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay. Communications on Pure & Applied Analysis, 2018, 17 (1) : 243-265. doi: 10.3934/cpaa.2018015

[10]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[11]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[12]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[13]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

[14]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[15]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[16]

Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983

[17]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure & Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[18]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[19]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[20]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (12)
  • HTML views (99)
  • Cited by (0)

[Back to Top]