February  2016, 9(1): 73-88. doi: 10.3934/dcdss.2016.9.73

On the concentration of entropy for scalar conservation laws

1. 

SISSA, via Bonomea 265, Trieste, I-34163, Italy, Italy

Received  September 2014 Revised  February 2015 Published  December 2015

We prove that the entropy for an $L^\infty$-solution to a scalar conservation laws with continuous initial data is concentrated on a countably $1$-rectifiable set. To prove this result we introduce the notion of Lagrangian representation of the solution and give regularity estimates on the solution.
Citation: Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73
References:
[1]

L. Ambrosio and C. De Lellis, A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton-Jacobi equations,, J. Hyperbolic Diff. Equ., 1 (2004), 813. doi: 10.1142/S0219891604000263. Google Scholar

[2]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws,, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1. doi: 10.1007/PL00001406. Google Scholar

[3]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017. doi: 10.1080/03605307908820117. Google Scholar

[4]

G. Bellettini, L. Bertini, M. Mariani and M. Novaga, $\Gamma$-entropy cost for scalar conservation laws,, Archive for Rational Mechanics and Analysis, 195 (2010), 261. doi: 10.1007/s00205-008-0197-2. Google Scholar

[5]

S. Bianchini and L. Caravenna, SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension,, Communications in Mathematical Physics, 313 (2012), 1. doi: 10.1007/s00220-012-1480-5. Google Scholar

[6]

S. Bianchini and L. Yu, Structure of entropy solutions to general scalar conservation laws in one space dimension,, J. Math. Anal. Appl., 428 (2015), 356. doi: 10.1016/j.jmaa.2015.03.006. Google Scholar

[7]

A. Bressan and P. G. LeFloch, Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws,, Indiana Univ. Math. J., 48 (1999), 43. doi: 10.1512/iumj.1999.48.1524. Google Scholar

[8]

A. Bressan, Hyperbolic Systems of Conservation Laws,, Oxford Lecture Series in Mathematics and its Applications, (2000). Google Scholar

[9]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Third edition, (2010). doi: 10.1007/978-3-642-04048-1. Google Scholar

[10]

S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228. Google Scholar

[11]

C. De Lellis, F. Otto and M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar conservation laws,, Archive for Rational Mechanics and Analysis, 170 (2003), 137. doi: 10.1007/s00205-003-0270-9. Google Scholar

[12]

C. De Lellis and T. Rivière, Concentration estimates for entropy measures,, Journal de Mathématiques Pures et Appliquées, 82 (2003), 1343. doi: 10.1016/S0021-7824(03)00061-8. Google Scholar

[13]

F. Otto, Initial-boundary value problem for a scalar conservation law,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 729. Google Scholar

[14]

D. Serre, Systems of Conservation Laws. 1,, Cambridge University Press, (1999). doi: 10.1017/CBO9780511612374. Google Scholar

show all references

References:
[1]

L. Ambrosio and C. De Lellis, A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton-Jacobi equations,, J. Hyperbolic Diff. Equ., 1 (2004), 813. doi: 10.1142/S0219891604000263. Google Scholar

[2]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws,, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1. doi: 10.1007/PL00001406. Google Scholar

[3]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017. doi: 10.1080/03605307908820117. Google Scholar

[4]

G. Bellettini, L. Bertini, M. Mariani and M. Novaga, $\Gamma$-entropy cost for scalar conservation laws,, Archive for Rational Mechanics and Analysis, 195 (2010), 261. doi: 10.1007/s00205-008-0197-2. Google Scholar

[5]

S. Bianchini and L. Caravenna, SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension,, Communications in Mathematical Physics, 313 (2012), 1. doi: 10.1007/s00220-012-1480-5. Google Scholar

[6]

S. Bianchini and L. Yu, Structure of entropy solutions to general scalar conservation laws in one space dimension,, J. Math. Anal. Appl., 428 (2015), 356. doi: 10.1016/j.jmaa.2015.03.006. Google Scholar

[7]

A. Bressan and P. G. LeFloch, Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws,, Indiana Univ. Math. J., 48 (1999), 43. doi: 10.1512/iumj.1999.48.1524. Google Scholar

[8]

A. Bressan, Hyperbolic Systems of Conservation Laws,, Oxford Lecture Series in Mathematics and its Applications, (2000). Google Scholar

[9]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Third edition, (2010). doi: 10.1007/978-3-642-04048-1. Google Scholar

[10]

S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228. Google Scholar

[11]

C. De Lellis, F. Otto and M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar conservation laws,, Archive for Rational Mechanics and Analysis, 170 (2003), 137. doi: 10.1007/s00205-003-0270-9. Google Scholar

[12]

C. De Lellis and T. Rivière, Concentration estimates for entropy measures,, Journal de Mathématiques Pures et Appliquées, 82 (2003), 1343. doi: 10.1016/S0021-7824(03)00061-8. Google Scholar

[13]

F. Otto, Initial-boundary value problem for a scalar conservation law,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 729. Google Scholar

[14]

D. Serre, Systems of Conservation Laws. 1,, Cambridge University Press, (1999). doi: 10.1017/CBO9780511612374. Google Scholar

[1]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[2]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[3]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[4]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[5]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[6]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[7]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[8]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[9]

Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure & Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973

[10]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[11]

Lijuan Wang, Weike Wang. Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2835-2854. doi: 10.3934/cpaa.2019127

[12]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[13]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[14]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[15]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[16]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[17]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[18]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

[19]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[20]

Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]