December 2017, 11(6): 1107-1119. doi: 10.3934/ipi.2017051

The Generalized Linear Sampling and factorization methods only depends on the sign of contrast on the boundary

6 quai Watier, BP 49, Chatou, 78401, CEDEX, France

Received  February 2017 Published  September 2017

We extend the applicability of the Generalized Linear Sampling Method (GLSM)[2] and the Factorization Method (FM)[16] to the case of inhomogeneities where the contrast changes sign. Both methods give an exact characterization of the target shapes in terms of the farfield operator (at a fixed frequency) using the coercivity property of a special solution operator. We prove this property assuming that the contrast has a fixed sign in a neighborhood of the inhomogeneities boundary. We treat both isotropic and anisotropic scatterers with possibly different supports for the isotropic and anisotropic parts. We finally validate the methods through some numerical tests in two dimensions.

Citation: Lorenzo Audibert. The Generalized Linear Sampling and factorization methods only depends on the sign of contrast on the boundary. Inverse Problems & Imaging, 2017, 11 (6) : 1107-1119. doi: 10.3934/ipi.2017051
References:
[1]

L. AudibertA. Girard and H. Haddar, Identifying defects in an unknown background using differential measurements, Inverse Problems and Imaging, 9 (2015), 625-643. doi: 10.3934/ipi.2015.9.625.

[2]

L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 035011, 20pp. doi: 10.1088/0266-5611/30/3/035011.

[3]

L. Audibert and H. Haddar, The generalized linear sampling method for limited aperture measurements, SIAM J. Imaging Sci., 10 (2017), 845-870. doi: 10.1137/16M110112X.

[4]

A.-S. Bonnet-Ben DhiaL. Chesnel and H. Haddar, On the use of $T$-coercivity to study the interior transmission eigenvalue problem, C. R. Math. Acad. Sci. Paris, 349 (2011), 647-651. doi: 10.1016/j.crma.2011.05.008.

[5]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006. An introduction.

[6]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, volume 88 of CBMS Series publications, 2016. doi: 10.1137/1.9781611974461.ch1.

[7]

F. Cakoni and I. Harris, The factorization method for a defective region in an anisotropic material, Inverse Problems, 31 (2015), 025002, 22pp. doi: 10.1088/0266-5611/31/2/025002.

[8]

H. HaddarF. Cakoni and S. Meng, Boundary integral equations for the transmission eigenvalue problem for aaxwell equations, J. Integral Equations Appl., 27 (2015), 375-406. doi: 10.1216/JIE-2015-27-3-375.

[9]

A. Cossonnière and H. Haddar, Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376. doi: 10.1216/JIE-2013-25-3-341.

[10]

L. Evgeny and L. Armin, Monotonicity in inverse medium scattering,

[11]

B. Gebauer, The factorization method for real elliptic problems, Zeitschrift für Analysis und ihre Anwendungen, 25 (2006), 81-102. doi: 10.4171/ZAA/1279.

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[13]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[14]

A. Kirsch, The factorization method for a class of inverse elliptic problems, Mathematische Nachrichten, 278 (2005), 258-277. doi: 10.1002/mana.200310239.

[15]

A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, Comptes Rendus Mathématique, 354 (2016), 377-382. doi: 10.1016/j.crma.2016.01.015.

[16]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2008.

[17]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354. doi: 10.1137/110836420.

[18]

J. YangB. ~Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects, SIAM Journal of Applied Mathematics, 73 (2013), 617-635. doi: 10.1137/120883724.

show all references

References:
[1]

L. AudibertA. Girard and H. Haddar, Identifying defects in an unknown background using differential measurements, Inverse Problems and Imaging, 9 (2015), 625-643. doi: 10.3934/ipi.2015.9.625.

[2]

L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 035011, 20pp. doi: 10.1088/0266-5611/30/3/035011.

[3]

L. Audibert and H. Haddar, The generalized linear sampling method for limited aperture measurements, SIAM J. Imaging Sci., 10 (2017), 845-870. doi: 10.1137/16M110112X.

[4]

A.-S. Bonnet-Ben DhiaL. Chesnel and H. Haddar, On the use of $T$-coercivity to study the interior transmission eigenvalue problem, C. R. Math. Acad. Sci. Paris, 349 (2011), 647-651. doi: 10.1016/j.crma.2011.05.008.

[5]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006. An introduction.

[6]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, volume 88 of CBMS Series publications, 2016. doi: 10.1137/1.9781611974461.ch1.

[7]

F. Cakoni and I. Harris, The factorization method for a defective region in an anisotropic material, Inverse Problems, 31 (2015), 025002, 22pp. doi: 10.1088/0266-5611/31/2/025002.

[8]

H. HaddarF. Cakoni and S. Meng, Boundary integral equations for the transmission eigenvalue problem for aaxwell equations, J. Integral Equations Appl., 27 (2015), 375-406. doi: 10.1216/JIE-2015-27-3-375.

[9]

A. Cossonnière and H. Haddar, Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376. doi: 10.1216/JIE-2013-25-3-341.

[10]

L. Evgeny and L. Armin, Monotonicity in inverse medium scattering,

[11]

B. Gebauer, The factorization method for real elliptic problems, Zeitschrift für Analysis und ihre Anwendungen, 25 (2006), 81-102. doi: 10.4171/ZAA/1279.

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[13]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[14]

A. Kirsch, The factorization method for a class of inverse elliptic problems, Mathematische Nachrichten, 278 (2005), 258-277. doi: 10.1002/mana.200310239.

[15]

A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, Comptes Rendus Mathématique, 354 (2016), 377-382. doi: 10.1016/j.crma.2016.01.015.

[16]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2008.

[17]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354. doi: 10.1137/110836420.

[18]

J. YangB. ~Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects, SIAM Journal of Applied Mathematics, 73 (2013), 617-635. doi: 10.1137/120883724.

Figure 1.  First line : Factorization method (left) and GLSM (right) without sign changing contrast. Second line : Factorization method (left) and GLSM (right) with sign changing contrast.
[1]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[2]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[3]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[4]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[5]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[6]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[7]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems & Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[8]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[9]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[10]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[11]

Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709

[12]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[13]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

[14]

Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563

[15]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[16]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[17]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[18]

Pedro Serranho. A hybrid method for inverse scattering for Sound-soft obstacles in R3. Inverse Problems & Imaging, 2007, 1 (4) : 691-712. doi: 10.3934/ipi.2007.1.691

[19]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[20]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (12)
  • HTML views (113)
  • Cited by (0)

Other articles
by authors

[Back to Top]