2015, 2015(special): 615-620. doi: 10.3934/proc.2015.0615

Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition

1. 

Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, Kentucky 40475, United States, United States

Received  September 2014 Revised  May 2015 Published  November 2015

In this paper, we apply Krasnosel'skii's cone expansion and compression fixed point theorem to show the existence of at least one positive solution to the nonlinear fractional boundary value problem $D^\alpha_{0^+} u + a(t)f(u)=0$, $0 < t < 1$, $1 < \alpha \le 2$, satisfying boundary conditions $u(0)=D^\beta_{0^+} u(1)=0$, $0\le\beta\le1$.
Citation: Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615
References:
[1]

B. Ahmad and J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions,, \emph{Fixed Point Theory}, 13 (2012), 329. Google Scholar

[2]

Z. Bai and H. Lu, Positive solutions for boundary value problems of nonlinear fractional differential equations,, \emph{J. Math. Anal. Appl.}, 311 (2005), 495. Google Scholar

[3]

V. Daftardar-Genjji, Positive solutions of a system of non-autonomous nonlinear fractional differential equations,, \emph{J. Math. Anal. Appl.}, 302 (2004), 56. Google Scholar

[4]

K. Diethelm, The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type,, Lecture Notes in Mathematics, (2004). Google Scholar

[5]

P. W. Eloe and J. T. Neugebauer, Conjugate points for fractional differential equations,, \emph{Fract. Calc. Appl. Anal.}, 17 (2014), 855. Google Scholar

[6]

P. W. Eloe, J. W. Lyons, and J. T. Neugebauer, An ordering on Green's functions for a family of two-point boundary value problems for fractional differential equations,, \emph{Commun. Appl. Anal.}, 19 (2015), 453. Google Scholar

[7]

J. R. Graef and X. Liu, Existence of positive solutions of fractional boundary value problems involving bounded linear operators,, \emph{J. Nonlinear Funct. Anal.}, 2014 (2014), 1. Google Scholar

[8]

E. R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation,, \emph{Electron. J. Qual. Theory Differ. Equ.}, 17 (2014), 855. Google Scholar

[9]

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North Holland Math. Stud., (2006). Google Scholar

[10]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, (English), Translated by A. H. Armstrong,, A Pergamon Press Book, (1964). Google Scholar

[11]

R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces,, \emph{Indiana Univ. Math. J.}, 28 (1979), 673. Google Scholar

[12]

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications,, Gordon and Breach, (1993). Google Scholar

[13]

G. Wang, S. K. Ntouyas, and L. Zhang, Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument,, \emph{Adv. Difference Equ.}, 2011 (2011). Google Scholar

[14]

S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation,, \emph{J. Math. Anal. Appl.}, 1 (2013), 12. Google Scholar

[15]

S. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations,, \emph{Electron. J. Diff. Eqns.}, 2006 (2006), 1. Google Scholar

show all references

References:
[1]

B. Ahmad and J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions,, \emph{Fixed Point Theory}, 13 (2012), 329. Google Scholar

[2]

Z. Bai and H. Lu, Positive solutions for boundary value problems of nonlinear fractional differential equations,, \emph{J. Math. Anal. Appl.}, 311 (2005), 495. Google Scholar

[3]

V. Daftardar-Genjji, Positive solutions of a system of non-autonomous nonlinear fractional differential equations,, \emph{J. Math. Anal. Appl.}, 302 (2004), 56. Google Scholar

[4]

K. Diethelm, The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type,, Lecture Notes in Mathematics, (2004). Google Scholar

[5]

P. W. Eloe and J. T. Neugebauer, Conjugate points for fractional differential equations,, \emph{Fract. Calc. Appl. Anal.}, 17 (2014), 855. Google Scholar

[6]

P. W. Eloe, J. W. Lyons, and J. T. Neugebauer, An ordering on Green's functions for a family of two-point boundary value problems for fractional differential equations,, \emph{Commun. Appl. Anal.}, 19 (2015), 453. Google Scholar

[7]

J. R. Graef and X. Liu, Existence of positive solutions of fractional boundary value problems involving bounded linear operators,, \emph{J. Nonlinear Funct. Anal.}, 2014 (2014), 1. Google Scholar

[8]

E. R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation,, \emph{Electron. J. Qual. Theory Differ. Equ.}, 17 (2014), 855. Google Scholar

[9]

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North Holland Math. Stud., (2006). Google Scholar

[10]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, (English), Translated by A. H. Armstrong,, A Pergamon Press Book, (1964). Google Scholar

[11]

R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces,, \emph{Indiana Univ. Math. J.}, 28 (1979), 673. Google Scholar

[12]

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications,, Gordon and Breach, (1993). Google Scholar

[13]

G. Wang, S. K. Ntouyas, and L. Zhang, Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument,, \emph{Adv. Difference Equ.}, 2011 (2011). Google Scholar

[14]

S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation,, \emph{J. Math. Anal. Appl.}, 1 (2013), 12. Google Scholar

[15]

S. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations,, \emph{Electron. J. Diff. Eqns.}, 2006 (2006), 1. Google Scholar

[1]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[2]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 797-804. doi: 10.3934/dcdss.2020045

[3]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[4]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 937-956. doi: 10.3934/dcdss.2020055

[5]

Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193

[6]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[7]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[8]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[9]

Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 741-754. doi: 10.3934/dcdss.2020041

[10]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 723-739. doi: 10.3934/dcdss.2020040

[11]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[12]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[13]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[14]

Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141

[15]

Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57

[16]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[17]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[18]

Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168

[19]

Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 995-1006. doi: 10.3934/dcdss.2020058

[20]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 609-627. doi: 10.3934/dcdss.2020033

 Impact Factor: 

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]