2015, 2015(special): 515-524. doi: 10.3934/proc.2015.0515

Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin

1. 

Institut für Mathematik und Rechneranwendung (LRT-1), Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg/München, Germany, Germany

Received  September 2014 Revised  June 2015 Published  November 2015

We consider a numerical study of an optimal control problem for a truck with a fluid basin, which leads to an optimal control problem with a coupled system of partial differential equations (PDEs) and ordinary differential equations (ODEs). The motion of the fluid in the basin is modeled by the nonlinear hyperbolic Saint-Venant (shallow water) equations while the vehicle dynamics are described by the equations of motion of a mechanical multi-body system. These equations are fully coupled through boundary conditions and force terms. We pursue a first-discretize-then-optimize approach using a Lax-Friedrich scheme. To this end a reduced optimization problem is obtained by a direct shooting approach and solved by a sequential quadratic programming method. For the computation of gradients we employ an efficient adjoint scheme. Numerical case studies for optimal braking maneuvers of the truck and the basin filled with a fluid are presented.
Citation: Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515
References:
[1]

J. M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs 136, (2007).

[2]

F. Dubois, N. Petit and P. Rochon, Motion planning and nonlinear simulations for a tank containing a fluid,, in Proc. of the 5th European Control Conf. (ECC 99), ().

[3]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010).

[4]

M. Gerdts, Optimal Control of ODEs and DAEs,, de Gruyter Textbook, (2012).

[5]

M. Gerdts, OCPID-DAE1, Optimal Control and Parameter Identification with Differential-Algebraic Equations of Index 1. User Guide (Online Documentation),, Universität der Bundeswehr München, (2010).

[6]

M. Gugat and G. Leugering, Global boundary controllability of the De St. Venant equations between steady states,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1.

[7]

M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction,, Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257.

[8]

D. Kroener, Numerical Schemes for Conservation Laws,, Wiley-Teubner Series Advances in Numerical Mathematics, (1997).

[9]

A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system,, M2AN Math. Model. Numer. Anal., 36 (2002), 397.

[10]

P. D. Lax, Hyperbolic Partial Differential Equations,, with an appendix by Cathleen S. Morawetz, (2006).

[11]

C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow,, reprinted edition, (1998).

show all references

References:
[1]

J. M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs 136, (2007).

[2]

F. Dubois, N. Petit and P. Rochon, Motion planning and nonlinear simulations for a tank containing a fluid,, in Proc. of the 5th European Control Conf. (ECC 99), ().

[3]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010).

[4]

M. Gerdts, Optimal Control of ODEs and DAEs,, de Gruyter Textbook, (2012).

[5]

M. Gerdts, OCPID-DAE1, Optimal Control and Parameter Identification with Differential-Algebraic Equations of Index 1. User Guide (Online Documentation),, Universität der Bundeswehr München, (2010).

[6]

M. Gugat and G. Leugering, Global boundary controllability of the De St. Venant equations between steady states,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1.

[7]

M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction,, Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257.

[8]

D. Kroener, Numerical Schemes for Conservation Laws,, Wiley-Teubner Series Advances in Numerical Mathematics, (1997).

[9]

A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system,, M2AN Math. Model. Numer. Anal., 36 (2002), 397.

[10]

P. D. Lax, Hyperbolic Partial Differential Equations,, with an appendix by Cathleen S. Morawetz, (2006).

[11]

C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow,, reprinted edition, (1998).

[1]

Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031

[2]

Jean-Frédéric Gerbeau, Benoit Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 89-102. doi: 10.3934/dcdsb.2001.1.89

[3]

Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733

[4]

Emmanuel Audusse, Fayssal Benkhaldoun, Jacques Sainte-Marie, Mohammed Seaid. Multilayer Saint-Venant equations over movable beds. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 917-934. doi: 10.3934/dcdsb.2011.15.917

[5]

Georges Bastin, Jean-Michel Coron, Brigitte d'Andréa-Novel. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks & Heterogeneous Media, 2009, 4 (2) : 177-187. doi: 10.3934/nhm.2009.4.177

[6]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[7]

Adam Bobrowski, Katarzyna Morawska. From a PDE model to an ODE model of dynamics of synaptic depression. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2313-2327. doi: 10.3934/dcdsb.2012.17.2313

[8]

Hassen Arfaoui, Faker Ben Belgacem, Henda El Fekih, Jean-Pierre Raymond. Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 491-511. doi: 10.3934/dcdsb.2011.15.491

[9]

Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501

[10]

E. Audusse. A multilayer Saint-Venant model: Derivation and numerical validation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 189-214. doi: 10.3934/dcdsb.2005.5.189

[11]

Youshan Tao, J. Ignacio Tello. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 193-207. doi: 10.3934/mbe.2016.13.193

[12]

Roberto Triggiani. The coupled PDE system of a composite (sandwich) beam revisited. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 285-298. doi: 10.3934/dcdsb.2003.3.285

[13]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[14]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

[15]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[16]

Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133

[17]

Juan Carlos De los Reyes, Carola-Bibiane Schönlieb. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization. Inverse Problems & Imaging, 2013, 7 (4) : 1183-1214. doi: 10.3934/ipi.2013.7.1183

[18]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[19]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[20]

Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935

 Impact Factor: 

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]