2013, 2013(special): 437-446. doi: 10.3934/proc.2013.2013.437

Optimal control of a linear stochastic Schrödinger equation

1. 

Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences II, Institute of Mathematics, D - 06099 Halle (Saale), Germany

Received  August 2012 Published  November 2013

This paper concerns a linear controlled Schrödinger equation with additive noise and corresponding initial and Neumann boundary conditions. The existence and uniqueness of the variational solution of this Schrödinger problem and some of its properties will be discussed. Furthermore, a given objective functional shall be minimized by an optimal control. Though, instead of the control only the solution of the controlled Schrödinger problem appears explicitly in the objective functional. Based on the adjoint problem of the stochastic Schrödinger problem, a gradient formula is developed.
Citation: Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437
References:
[1]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions",, Cambridge University Press, (1992).

[2]

A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in $H^1$,, Stochastic Analysis and Applications, 21 (2003), 97.

[3]

M. H. Farag, A gradient-type optimization technique for the optimal control for Schrodinger equations,, International Journal on Information Theories and Applications, 10 (2003), 414.

[4]

W. Grecksch and H. Lisei, Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method,, Stochastic Analysis and Applications, 31 (2013), 314.

[5]

W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type,, Stochastic Analysis and Applications, 29 (2011), 631.

[6]

D. Keller, "A Problem of Optimal Control for the Linear Stochastic Schrödinger Equation",, Master's thesis, (2011).

[7]

C. Prévôt and M. Röckner, "A Concise Course on Stochastic Partial Differential Equations",, Springer-Verlag, (2007).

[8]

M. Subaşi, An estimate for the solution of a perturbed nonlinear quantum-mechanical problem,, Chaos, 14 (2002), 397.

[9]

M. Subaşi, An optimal control problem governed by the potential of a linear Schrodinger equation,, Applied Mathematics and Computation, 131 (2002), 95.

[10]

E. Zuazua, Remarks on the controllability of the Schrödinger equation,, CRM Proceedings and Lecture Notes, 33 (2003), 193.

show all references

References:
[1]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions",, Cambridge University Press, (1992).

[2]

A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in $H^1$,, Stochastic Analysis and Applications, 21 (2003), 97.

[3]

M. H. Farag, A gradient-type optimization technique for the optimal control for Schrodinger equations,, International Journal on Information Theories and Applications, 10 (2003), 414.

[4]

W. Grecksch and H. Lisei, Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method,, Stochastic Analysis and Applications, 31 (2013), 314.

[5]

W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type,, Stochastic Analysis and Applications, 29 (2011), 631.

[6]

D. Keller, "A Problem of Optimal Control for the Linear Stochastic Schrödinger Equation",, Master's thesis, (2011).

[7]

C. Prévôt and M. Röckner, "A Concise Course on Stochastic Partial Differential Equations",, Springer-Verlag, (2007).

[8]

M. Subaşi, An estimate for the solution of a perturbed nonlinear quantum-mechanical problem,, Chaos, 14 (2002), 397.

[9]

M. Subaşi, An optimal control problem governed by the potential of a linear Schrodinger equation,, Applied Mathematics and Computation, 131 (2002), 95.

[10]

E. Zuazua, Remarks on the controllability of the Schrödinger equation,, CRM Proceedings and Lecture Notes, 33 (2003), 193.

[1]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[2]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[3]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[4]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[5]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations & Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[6]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[7]

Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-16. doi: 10.3934/dcdsb.2018131

[8]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[9]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[10]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[11]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[12]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[13]

Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1533-1574. doi: 10.3934/dcds.2014.34.1533

[14]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[15]

Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669

[16]

Jingtao Shi, Juanjuan Xu, Huanshui Zhang. Stochastic recursive optimal control problem with time delay and applications. Mathematical Control & Related Fields, 2015, 5 (4) : 859-888. doi: 10.3934/mcrf.2015.5.859

[17]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[18]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[19]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

[20]

Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487

 Impact Factor: 

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]