
Previous Article
Characterization of the spectral density function for a onesided tridiagonal Jacobi matrix operator
 PROC Home
 This Issue

Next Article
Existence of nontrivial solutions to systems of multipoint boundary value problems
Regularization for illposed inhomogeneous evolution problems in a Hilbert space
1.  Division of Science and Engineering, Penn State Abington, 1600 Woodland Road, Abington, PA 19001, United States 
References:
show all references
References:
[1] 
Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An innerouter regularizing method for illposed problems. Inverse Problems & Imaging, 2014, 8 (2) : 409420. doi: 10.3934/ipi.2014.8.409 
[2] 
Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear illposed equations II: Applications. Inverse Problems & Imaging, 2007, 1 (3) : 507523. doi: 10.3934/ipi.2007.1.507 
[3] 
Markus Haltmeier, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear illposed equations I: convergence analysis. Inverse Problems & Imaging, 2007, 1 (2) : 289298. doi: 10.3934/ipi.2007.1.289 
[4] 
Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasireversibility to solve illposed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 9711002. doi: 10.3934/ipi.2015.9.971 
[5] 
Stefan Kindermann. Convergence of the gradient method for illposed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703720. doi: 10.3934/ipi.2017033 
[6] 
Sergiy Zhuk. Inverse problems for linear illposed differentialalgebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 14671476. doi: 10.3934/proc.2011.2011.1467 
[7] 
Matthew A. Fury. Estimates for solutions of nonautonomous semilinear illposed problems. Conference Publications, 2015, 2015 (special) : 479488. doi: 10.3934/proc.2015.0479 
[8] 
Misha Perepelitsa. An illposed problem for the NavierStokes equations for compressible flows. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 609623. doi: 10.3934/dcds.2010.26.609 
[9] 
Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for illposed nonLinear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 13631393. doi: 10.3934/dcdsb.2018155 
[10] 
Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On LevenbergMarquardtKaczmarz iterative methods for solving systems of nonlinear illposed equations. Inverse Problems & Imaging, 2010, 4 (3) : 335350. doi: 10.3934/ipi.2010.4.335 
[11] 
Adriano De Cezaro, Johann Baumeister, Antonio Leitão. Modified iterated Tikhonov methods for solving systems of nonlinear illposed equations. Inverse Problems & Imaging, 2011, 5 (1) : 117. doi: 10.3934/ipi.2011.5.1 
[12] 
Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving illposed operator equations with solutions defined on surfaces. Inverse Problems & Imaging, 2017, 11 (2) : 221246. doi: 10.3934/ipi.2017011 
[13] 
Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete & Continuous Dynamical Systems  S, 2011, 4 (3) : 723744. doi: 10.3934/dcdss.2011.4.723 
[14] 
Youri V. Egorov, Evariste SanchezPalencia. Remarks on certain singular perturbations with illposed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems  A, 2011, 31 (4) : 12931305. doi: 10.3934/dcds.2011.31.1293 
[15] 
Alfredo Lorenzi, Luca Lorenzi. A strongly illposed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations & Control Theory, 2014, 3 (3) : 499524. doi: 10.3934/eect.2014.3.499 
[16] 
Faker Ben Belgacem. Uniqueness for an illposed reactiondispersion model. Application to organic pollution in streamwaters. Inverse Problems & Imaging, 2012, 6 (2) : 163181. doi: 10.3934/ipi.2012.6.163 
[17] 
Sebastián Ferrer, Martin Lara. Families of canonical transformations by HamiltonJacobiPoincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223241. doi: 10.3934/jgm.2010.2.223 
[18] 
Cristina Brändle, Arturo De Pablo. Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 11611178. doi: 10.3934/cpaa.2018056 
[19] 
A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with nonlocal operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems  A, 2009, 24 (1) : 3557. doi: 10.3934/dcds.2009.24.35 
[20] 
Jiongmin Yong. Forwardbackward evolution equations and applications. Mathematical Control & Related Fields, 2016, 6 (4) : 653704. doi: 10.3934/mcrf.2016019 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]