# American Institute of Mathematical Sciences

2011, 2011(Special): 437-446. doi: 10.3934/proc.2011.2011.437

## Variational inequality for the Stokes equations with constraint

 1 Department of Mathematics, Kyoto University of Education, Fuji 1, Fukakusa Fushimi-ku, Kyoto 612-8522

Received  June 2010 Revised  February 2011 Published  October 2011

In this paper, the existence problem of the variational inequality for the constrained Stokes equations is considered, in 2- and 3-dimensions with bounded domain. The evolution equation is governed by the subdi erential which formulates the pointwise constraint by the time-dependent obstacle functions. Thanks to the penalty method due to Temam, the hindrance of divergence freeness is avoided. We then characterize the Yosida approximation of the subdi erential and obtain suitable limit conditions.
Citation: Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437
 [1] Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems & Imaging, 2014, 8 (1) : 23-51. doi: 10.3934/ipi.2014.8.23 [2] Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055 [3] Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291 [4] J.I. Díaz, D. Gómez-Castro. Steiner symmetrization for concave semilinear elliptic and parabolic equations and the obstacle problem. Conference Publications, 2015, 2015 (special) : 379-386. doi: 10.3934/proc.2015.0379 [5] Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013 [6] Ali Fuat Alkaya, Dindar Oz. An optimal algorithm for the obstacle neutralization problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 835-856. doi: 10.3934/jimo.2016049 [7] Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277 [8] Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59 [9] William Rundell. Recovering an obstacle using integral equations. Inverse Problems & Imaging, 2009, 3 (2) : 319-332. doi: 10.3934/ipi.2009.3.319 [10] Jingzhen Liu, Ka-Fai Cedric Yiu, Kok Lay Teo. Optimal investment-consumption problem with constraint. Journal of Industrial & Management Optimization, 2013, 9 (4) : 743-768. doi: 10.3934/jimo.2013.9.743 [11] Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial & Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453 [12] Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587 [13] Juan J. Manfredi, Julio D. Rossi, Stephanie J. Somersille. An obstacle problem for Tug-of-War games. Communications on Pure & Applied Analysis, 2015, 14 (1) : 217-228. doi: 10.3934/cpaa.2015.14.217 [14] Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240 [15] Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983 [16] Song Wang. Numerical solution of an obstacle problem with interval coefficients. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019030 [17] Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961 [18] Trinh Viet Duoc. Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3387-3405. doi: 10.3934/dcds.2018145 [19] Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 [20] Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

Impact Factor: