March  2019, 14(1): 173-204. doi: 10.3934/nhm.2019009

The cardiac bidomain model and homogenization

Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo, Norway

* Corresponding author: Erik Grandelius

Received  August 2018 Revised  November 2018 Published  January 2019

Fund Project: This work was supported by the Research Council of Norway (project 250674/F20)

We provide a rather simple proof of a homogenization result for the bidomain model of cardiac electrophysiology. Departing from a microscopic cellular model, we apply the theory of two-scale convergence to derive the bidomain model. To allow for some relevant nonlinear membrane models, we make essential use of the boundary unfolding operator. There are several complications preventing the application of standard homogenization results, including the degenerate temporal structure of the bidomain equations and a nonlinear dynamic boundary condition on an oscillating surface.

Citation: Erik Grandelius, Kenneth H. Karlsen. The cardiac bidomain model and homogenization. Networks & Heterogeneous Media, 2019, 14 (1) : 173-204. doi: 10.3934/nhm.2019009
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. Google Scholar

[2]

G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media (May 1995) (ed. A. Bourgeat et al.), World Scientific Pub., Singapore, 1996, 15–25.Google Scholar

[3]

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces, Glas. Mat. Ser. III, 35 (2000), 161-177. Google Scholar

[4]

M. AmarD. AndreucciP. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differential Integral Equations, 26 (2013), 885-912. Google Scholar

[5]

B. AndreianovM. BendahmaneK. H. Karlsen and C. Pierre, Convergence of discrete duality finite volume schemes for the cardiac bidomain model, Netw. Heterog. Media, 6 (2011), 195-240. doi: 10.3934/nhm.2011.6.195. Google Scholar

[6]

M. Bendahmane and K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218. doi: 10.3934/nhm.2006.1.185. Google Scholar

[7]

M. Boulakia, M. A. Fernández, J.-F. Gerbeau and N. Zemzemi, A coupled system of PDEs and ODEs arising in electrocardiograms modeling, Appl. Math. Res. Express. AMRX, (2008), Art. ID abn002, 28pp. Google Scholar

[8]

Y. BourgaultY. Coudière and C. Pierre, Existence and uniqeness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., 10 (2009), 458-482. doi: 10.1016/j.nonrwa.2007.10.007. Google Scholar

[9]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0. Google Scholar

[10]

D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44 (2012), 718-760. doi: 10.1137/100817942. Google Scholar

[11]

D. CioranescuA. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620. doi: 10.1137/080713148. Google Scholar

[12]

D. Cioranescu and P. Donato, An Introduction to Homogenization, vol. 17 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1999. Google Scholar

[13]

P. Colli Franzone, L. F. Pavarino and S. Scacchi, Mathematical Cardiac Electrophysiology, vol. 13 of MS & A. Modeling, Simulation and Applications, Springer, Cham, 2014. doi: 10.1007/978-3-319-04801-7. Google Scholar

[14]

P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), vol. 50 of Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 2002, 49–78. Google Scholar

[15]

P. DonatoK. H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems, J. Math. Sci. (N.Y.), 176 (2011), 891-927. doi: 10.1007/s10958-011-0443-2. Google Scholar

[16]

P. Donato and K. H. Le Nguyen, Homogenization of diffusion problems with a nonlinear interfacial resistance, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1345-1380. doi: 10.1007/s00030-015-0325-2. Google Scholar

[17]

R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, Bulletin of Mathematical Biology, 17 (1955), 257-278. doi: 10.1007/BF02477753. Google Scholar

[18]

M. GahnM. Neuss-Radu and P. Knabner, Homogenization of reaction–diffusion processes in a two-component porous medium with nonlinear flux conditions at the interface, SIAM Journal on Applied Mathematics, 76 (2016), 1819-1843. doi: 10.1137/15M1018484. Google Scholar

[19]

M. Gahn and M. Neuss-Radu, A characterization of relatively compact sets in $L^p(\Omega, B)$, Stud. Univ. Babeş-Bolyai Math., 61 (2016), 279–290. Google Scholar

[20]

I. Graf and M. A. Peter, Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells, SIAM J. Math. Anal., 46 (2014), 3025-3049. doi: 10.1137/130921015. Google Scholar

[21]

E. Grandelius, The Bidomain Equations of Cardiac Electrophysiology, Master's thesis, University of Oslo, 2017.Google Scholar

[22]

C. S. Henriquez and W. Ying, The bidomain model of cardiac tissue: From microscale to macroscale, Springer US, Boston, MA, 2009, 401–421.Google Scholar

[23]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544. Google Scholar

[24]

U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous media, J. Differential Equations, 92 (1991), 199-225. doi: 10.1016/0022-0396(91)90047-D. Google Scholar

[25]

J. P. Keener and A. V. Panfilov, A biophysical model for defibrillation of cardiac tissue, Biophysical Journal, 71 (1996), 1335-1345. doi: 10.1016/S0006-3495(96)79333-5. Google Scholar

[26]

J. P. Keener, The effect of gap junctional distribution on defibrillation, Chaos, 8 (1998), 175-187. doi: 10.1063/1.166296. Google Scholar

[27]

J. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, no. v. 3 in Non-homogeneous Boundary Value Problems and Applications, Springer-Verlag, 1972. Google Scholar

[28]

D. LukkassenG. Nguetseng and P. Wall, Two-scale convergence., Int. J. Pure Appl. Math., 2 (2002), 35-86. Google Scholar

[29]

A. Marciniak-Czochra and M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenization techniques, SIAM J. Math. Anal., 40 (2008), 215-237. doi: 10.1137/050645269. Google Scholar

[30] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
[31]

J. C. Neu and W. Krassowska, Homogenization of syncytial tissues, Crit. Rev. Biomed. Eng., 21 (1993), 137-199. Google Scholar

[32]

M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal., 39 (2007), 687-720. doi: 10.1137/060665452. Google Scholar

[33]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043. Google Scholar

[34]

M. PennacchioG. Savaré and P. Colli Franzone, Multiscale modeling for the bioelectric activity of the heart, SIAM J. Math. Anal., 37 (2005), 1333-1370. doi: 10.1137/040615249. Google Scholar

[35]

G. Richardson, A multiscale approach to modelling electrochemical processes occurring across the cell membrane with application to transmission of action potentials, Mathematical Medicine and Biology: A Journal of the IMA, 26 (2009), 201-224. doi: 10.1093/imammb/dqn027. Google Scholar

[36]

G. Richardson and S. J. Chapman, Derivation of the bidomain equations for a beating heart with a general microstructure, SIAM J. Appl. Math., 71 (2011), 657-675. doi: 10.1137/090777165. Google Scholar

[37]

J. Simon, Compact sets in the space $L^ p(0, T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. doi: 10.1007/BF01762360. Google Scholar

[38]

J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart, Springer, 2006. Google Scholar

[39]

L. Tung, A bi-domain model for describing ischemic myocardial D-C potentials, PhD thesis, MIT, Cambridge, MA, 1978.Google Scholar

[40]

A. Tveito, K. H. Jæger, M. Kuchta, K.-A. Mardal and M. E. Rognes, A cell-based framework for numerical modeling of electrical conduction in cardiac tissue, Frontiers in Physics, 5 (2017), 48. doi: 10.3389/fphy.2017.00048. Google Scholar

[41]

M. Veneroni, Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field, Math. Methods Appl. Sci., 29 (2006), 1631-1661. doi: 10.1002/mma.740. Google Scholar

[42]

M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl., 10 (2009), 849-868. doi: 10.1016/j.nonrwa.2007.11.008. Google Scholar

[43]

Z. Yang, The periodic unfolding method for a class of parabolic problems with imperfect interfaces, ESAIM Math. Model. Numer. Anal., 48 (2014), 1279-1302. doi: 10.1051/m2an/2013139. Google Scholar

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. Google Scholar

[2]

G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media (May 1995) (ed. A. Bourgeat et al.), World Scientific Pub., Singapore, 1996, 15–25.Google Scholar

[3]

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces, Glas. Mat. Ser. III, 35 (2000), 161-177. Google Scholar

[4]

M. AmarD. AndreucciP. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differential Integral Equations, 26 (2013), 885-912. Google Scholar

[5]

B. AndreianovM. BendahmaneK. H. Karlsen and C. Pierre, Convergence of discrete duality finite volume schemes for the cardiac bidomain model, Netw. Heterog. Media, 6 (2011), 195-240. doi: 10.3934/nhm.2011.6.195. Google Scholar

[6]

M. Bendahmane and K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218. doi: 10.3934/nhm.2006.1.185. Google Scholar

[7]

M. Boulakia, M. A. Fernández, J.-F. Gerbeau and N. Zemzemi, A coupled system of PDEs and ODEs arising in electrocardiograms modeling, Appl. Math. Res. Express. AMRX, (2008), Art. ID abn002, 28pp. Google Scholar

[8]

Y. BourgaultY. Coudière and C. Pierre, Existence and uniqeness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., 10 (2009), 458-482. doi: 10.1016/j.nonrwa.2007.10.007. Google Scholar

[9]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0. Google Scholar

[10]

D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44 (2012), 718-760. doi: 10.1137/100817942. Google Scholar

[11]

D. CioranescuA. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620. doi: 10.1137/080713148. Google Scholar

[12]

D. Cioranescu and P. Donato, An Introduction to Homogenization, vol. 17 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1999. Google Scholar

[13]

P. Colli Franzone, L. F. Pavarino and S. Scacchi, Mathematical Cardiac Electrophysiology, vol. 13 of MS & A. Modeling, Simulation and Applications, Springer, Cham, 2014. doi: 10.1007/978-3-319-04801-7. Google Scholar

[14]

P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), vol. 50 of Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 2002, 49–78. Google Scholar

[15]

P. DonatoK. H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems, J. Math. Sci. (N.Y.), 176 (2011), 891-927. doi: 10.1007/s10958-011-0443-2. Google Scholar

[16]

P. Donato and K. H. Le Nguyen, Homogenization of diffusion problems with a nonlinear interfacial resistance, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1345-1380. doi: 10.1007/s00030-015-0325-2. Google Scholar

[17]

R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, Bulletin of Mathematical Biology, 17 (1955), 257-278. doi: 10.1007/BF02477753. Google Scholar

[18]

M. GahnM. Neuss-Radu and P. Knabner, Homogenization of reaction–diffusion processes in a two-component porous medium with nonlinear flux conditions at the interface, SIAM Journal on Applied Mathematics, 76 (2016), 1819-1843. doi: 10.1137/15M1018484. Google Scholar

[19]

M. Gahn and M. Neuss-Radu, A characterization of relatively compact sets in $L^p(\Omega, B)$, Stud. Univ. Babeş-Bolyai Math., 61 (2016), 279–290. Google Scholar

[20]

I. Graf and M. A. Peter, Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells, SIAM J. Math. Anal., 46 (2014), 3025-3049. doi: 10.1137/130921015. Google Scholar

[21]

E. Grandelius, The Bidomain Equations of Cardiac Electrophysiology, Master's thesis, University of Oslo, 2017.Google Scholar

[22]

C. S. Henriquez and W. Ying, The bidomain model of cardiac tissue: From microscale to macroscale, Springer US, Boston, MA, 2009, 401–421.Google Scholar

[23]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544. Google Scholar

[24]

U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous media, J. Differential Equations, 92 (1991), 199-225. doi: 10.1016/0022-0396(91)90047-D. Google Scholar

[25]

J. P. Keener and A. V. Panfilov, A biophysical model for defibrillation of cardiac tissue, Biophysical Journal, 71 (1996), 1335-1345. doi: 10.1016/S0006-3495(96)79333-5. Google Scholar

[26]

J. P. Keener, The effect of gap junctional distribution on defibrillation, Chaos, 8 (1998), 175-187. doi: 10.1063/1.166296. Google Scholar

[27]

J. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, no. v. 3 in Non-homogeneous Boundary Value Problems and Applications, Springer-Verlag, 1972. Google Scholar

[28]

D. LukkassenG. Nguetseng and P. Wall, Two-scale convergence., Int. J. Pure Appl. Math., 2 (2002), 35-86. Google Scholar

[29]

A. Marciniak-Czochra and M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenization techniques, SIAM J. Math. Anal., 40 (2008), 215-237. doi: 10.1137/050645269. Google Scholar

[30] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
[31]

J. C. Neu and W. Krassowska, Homogenization of syncytial tissues, Crit. Rev. Biomed. Eng., 21 (1993), 137-199. Google Scholar

[32]

M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal., 39 (2007), 687-720. doi: 10.1137/060665452. Google Scholar

[33]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043. Google Scholar

[34]

M. PennacchioG. Savaré and P. Colli Franzone, Multiscale modeling for the bioelectric activity of the heart, SIAM J. Math. Anal., 37 (2005), 1333-1370. doi: 10.1137/040615249. Google Scholar

[35]

G. Richardson, A multiscale approach to modelling electrochemical processes occurring across the cell membrane with application to transmission of action potentials, Mathematical Medicine and Biology: A Journal of the IMA, 26 (2009), 201-224. doi: 10.1093/imammb/dqn027. Google Scholar

[36]

G. Richardson and S. J. Chapman, Derivation of the bidomain equations for a beating heart with a general microstructure, SIAM J. Appl. Math., 71 (2011), 657-675. doi: 10.1137/090777165. Google Scholar

[37]

J. Simon, Compact sets in the space $L^ p(0, T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. doi: 10.1007/BF01762360. Google Scholar

[38]

J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart, Springer, 2006. Google Scholar

[39]

L. Tung, A bi-domain model for describing ischemic myocardial D-C potentials, PhD thesis, MIT, Cambridge, MA, 1978.Google Scholar

[40]

A. Tveito, K. H. Jæger, M. Kuchta, K.-A. Mardal and M. E. Rognes, A cell-based framework for numerical modeling of electrical conduction in cardiac tissue, Frontiers in Physics, 5 (2017), 48. doi: 10.3389/fphy.2017.00048. Google Scholar

[41]

M. Veneroni, Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field, Math. Methods Appl. Sci., 29 (2006), 1631-1661. doi: 10.1002/mma.740. Google Scholar

[42]

M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl., 10 (2009), 849-868. doi: 10.1016/j.nonrwa.2007.11.008. Google Scholar

[43]

Z. Yang, The periodic unfolding method for a class of parabolic problems with imperfect interfaces, ESAIM Math. Model. Numer. Anal., 48 (2014), 1279-1302. doi: 10.1051/m2an/2013139. Google Scholar

Figure 1.  The rescaled sets $ \Omega_i^{\varepsilon} $, $ \Omega_e^{\varepsilon} $, $ \Gamma^{\varepsilon} $ (left) and the unit cell $ Y $ (right)
[1]

Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks & Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353

[2]

Mostafa Bendahmane, Kenneth H. Karlsen. Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Networks & Heterogeneous Media, 2006, 1 (1) : 185-218. doi: 10.3934/nhm.2006.1.185

[3]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[4]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[5]

Toshi Ogawa. Degenerate Hopf instability in oscillatory reaction-diffusion equations. Conference Publications, 2007, 2007 (Special) : 784-793. doi: 10.3934/proc.2007.2007.784

[6]

Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195

[7]

Matthias Büger. Planar and screw-shaped solutions for a system of two reaction-diffusion equations on the circle. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 745-756. doi: 10.3934/dcds.2006.16.745

[8]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016

[9]

Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205

[10]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[11]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208

[12]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[13]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[14]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[15]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[16]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[17]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083

[18]

Fang Liu, Aihui Zhou. Localizations and parallelizations for two-scale finite element discretizations. Communications on Pure & Applied Analysis, 2007, 6 (3) : 757-773. doi: 10.3934/cpaa.2007.6.757

[19]

Alexandre Mouton. Expansion of a singularly perturbed equation with a two-scale converging convection term. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1447-1473. doi: 10.3934/dcdss.2016058

[20]

Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (44)
  • HTML views (200)
  • Cited by (0)

Other articles
by authors

[Back to Top]