December 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028

Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface

1. 

Center for Modelling and Simulation in the Biosciences (BIOMS), Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

2. 

Applied Mathematics I, Department Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany

* Corresponding author: Markus Gahn

Received  January 2018 Revised  July 2018 Published  November 2018

Fund Project: The work of the first author was supported by the Center for Modelling and Simulation in the Biosciences (BIOMS) at the University of Heidelberg

In this paper, we consider a system of reaction-diffusion equations in a domain consisting of two bulk regions separated by a thin layer with thickness of order $ε$ and a periodic heterogeneous structure. The equations inside the layer depend on $ε$ and the diffusivity inside the layer on an additional parameter $γ ∈ [-1, 1]$. On the bulk-layer interface, we assume a nonlinear Neumann-transmission condition depending on the solutions on both sides of the interface. For $\epsilon \to0 $, when the thin layer reduces to an interface $Σ$ between two bulk domains, we rigorously derive macroscopic models with effective conditions across the interface $Σ$. The crucial part is to pass to the limit in the nonlinear terms, especially for the traces on the interface between the different compartments. For this purpose, we use the method of two-scale convergence for thin heterogeneous layers, and a Kolmogorov-type compactness result for Banach valued functions, applied to the unfolded sequence in the thin layer.

Citation: Markus Gahn, Maria Neuss-Radu, Peter Knabner. Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks & Heterogeneous Media, 2018, 13 (4) : 609-640. doi: 10.3934/nhm.2018028
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.

[2]

T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 27 (1990), 823-836. doi: 10.1137/0521046.

[3]

A. BourgeatO. Gipouloux and E. Marušić-Paloka, Modelling of an underground waste disposal site by upscaling, Math. Meth. Appl. Sci., 27 (2004), 381-403. doi: 10.1002/mma.459.

[4]

A. Bourgeat and E. Marušić-Paloka, A homogenized model of an underground waste repository including a disturbed zone, Multiscale Model. Simul., 3 (2005), 918-939. doi: 10.1137/040605424.

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011.

[6]

D. CioranescuA. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620. doi: 10.1137/080713148.

[7]

D. CioranescuA. DamlamianG. Griso and D. Onofrei, The periodic unfolding method for perforated domains and Neumann sieve models, J. Math. Pures Appl., 89 (2008), 248-277. doi: 10.1016/j.matpur.2007.12.008.

[8]

M. Gahn and M. Neuss-Radu, A characterization of relatively compact sets in Lp(Ω, B), Stud. Univ. Babeş-Bolyai Math., 61 (2016), 279-290.

[9]

M. GahnM. Neuss-Radu and P. Knabner, Homogenization of reaction-diffusion processes in a two-component porous medium with nonlinear flux conditions at the interface, SIAM Journal on Applied Mathematics, 76 (2016), 1819-1843. doi: 10.1137/15M1018484.

[10]

M. GahnM. Neuss-Radu and P. Knabner, Derivation of effective transmission conditions for domains separated by a membrane for different scaling of membrane diffusivity, Discrete & Continuous Dynamical Systems-Series S, 10 (2017), 773-797. doi: 10.3934/dcdss.2017039.

[11]

G. GrisoA. Migunova and J. Orlik, Homogenization via unfolding in periodic layer with contact, Asymptotic Analysis, 99 (2016), 23-52. doi: 10.3233/ASY-161374.

[12]

G. GrisoA. Migunova and J. Orlik, Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams, Journal of Elasticity, 128 (2017), 291-331. doi: 10.1007/s10659-017-9628-3.

[13]

A. A. Moussa and L. Zlaïji, Homogenization of non-linear variational problems with thin inclusions, Math. J. Okayama Univ., 54 (2012), 97-131.

[14]

M. Neuss-Radu, Mathematical modelling and multi-scale analysis of transport processes through membranes (habilitation thesis), University of Heidelberg, 2017.

[15]

M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal., 39 (2007), 687-720. doi: 10.1137/060665452.

[16]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043.

[17]

I. S. PopJ. Bogers and K. Kumar, Analysis and upscaling of a reactive transport model in fractured porous media with nonlinear transmission condition, Vietnam Journal of Mathematics, 45 (2017), 77-102. doi: 10.1007/s10013-016-0198-7.

[18]

C. Vogt, A Homogenization Theorem Leading to a Volterra Integro-Differential Equation for Permeation Chromotography, SFB 123, University of Heidelberg, Preprint 155 and Diploma-thesis, 1982.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.

[2]

T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 27 (1990), 823-836. doi: 10.1137/0521046.

[3]

A. BourgeatO. Gipouloux and E. Marušić-Paloka, Modelling of an underground waste disposal site by upscaling, Math. Meth. Appl. Sci., 27 (2004), 381-403. doi: 10.1002/mma.459.

[4]

A. Bourgeat and E. Marušić-Paloka, A homogenized model of an underground waste repository including a disturbed zone, Multiscale Model. Simul., 3 (2005), 918-939. doi: 10.1137/040605424.

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011.

[6]

D. CioranescuA. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620. doi: 10.1137/080713148.

[7]

D. CioranescuA. DamlamianG. Griso and D. Onofrei, The periodic unfolding method for perforated domains and Neumann sieve models, J. Math. Pures Appl., 89 (2008), 248-277. doi: 10.1016/j.matpur.2007.12.008.

[8]

M. Gahn and M. Neuss-Radu, A characterization of relatively compact sets in Lp(Ω, B), Stud. Univ. Babeş-Bolyai Math., 61 (2016), 279-290.

[9]

M. GahnM. Neuss-Radu and P. Knabner, Homogenization of reaction-diffusion processes in a two-component porous medium with nonlinear flux conditions at the interface, SIAM Journal on Applied Mathematics, 76 (2016), 1819-1843. doi: 10.1137/15M1018484.

[10]

M. GahnM. Neuss-Radu and P. Knabner, Derivation of effective transmission conditions for domains separated by a membrane for different scaling of membrane diffusivity, Discrete & Continuous Dynamical Systems-Series S, 10 (2017), 773-797. doi: 10.3934/dcdss.2017039.

[11]

G. GrisoA. Migunova and J. Orlik, Homogenization via unfolding in periodic layer with contact, Asymptotic Analysis, 99 (2016), 23-52. doi: 10.3233/ASY-161374.

[12]

G. GrisoA. Migunova and J. Orlik, Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams, Journal of Elasticity, 128 (2017), 291-331. doi: 10.1007/s10659-017-9628-3.

[13]

A. A. Moussa and L. Zlaïji, Homogenization of non-linear variational problems with thin inclusions, Math. J. Okayama Univ., 54 (2012), 97-131.

[14]

M. Neuss-Radu, Mathematical modelling and multi-scale analysis of transport processes through membranes (habilitation thesis), University of Heidelberg, 2017.

[15]

M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal., 39 (2007), 687-720. doi: 10.1137/060665452.

[16]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043.

[17]

I. S. PopJ. Bogers and K. Kumar, Analysis and upscaling of a reactive transport model in fractured porous media with nonlinear transmission condition, Vietnam Journal of Mathematics, 45 (2017), 77-102. doi: 10.1007/s10013-016-0198-7.

[18]

C. Vogt, A Homogenization Theorem Leading to a Volterra Integro-Differential Equation for Permeation Chromotography, SFB 123, University of Heidelberg, Preprint 155 and Diploma-thesis, 1982.

Figure 1.  The microscopic domain containing the thin layer $\Omega_\epsilon^M$ with periodic structure for $n = 2$. The heterogeneous structure of the membrane is modeled by the diffusion coefficient $D^M$
[1]

Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks & Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353

[2]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[3]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[4]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[5]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016

[6]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[7]

Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

[8]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[9]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[10]

Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic & Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65

[11]

Igor Pažanin, Marcone C. Pereira. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption. Communications on Pure & Applied Analysis, 2018, 17 (2) : 579-592. doi: 10.3934/cpaa.2018031

[12]

Shin-Ichiro Ei, Hiroshi Matsuzawa. The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 901-921. doi: 10.3934/dcds.2010.26.901

[13]

Micol Amar. A note on boundary layer effects in periodic homogenization with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 537-556. doi: 10.3934/dcds.2000.6.537

[14]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[15]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[16]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[17]

Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823

[18]

Adela Capătă. Optimality conditions for strong vector equilibrium problems under a weak constraint qualification. Journal of Industrial & Management Optimization, 2015, 11 (2) : 563-574. doi: 10.3934/jimo.2015.11.563

[19]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[20]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (20)
  • HTML views (52)
  • Cited by (0)

Other articles
by authors

[Back to Top]