• Previous Article
    Influence prediction for continuous-time information propagation on networks
  • NHM Home
  • This Issue
  • Next Article
    Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface
December  2018, 13(4): 585-607. doi: 10.3934/nhm.2018027

On boundary optimal control problem for an arterial system: First-order optimality conditions

1. 

Dipartimento di Scienze Aziendali-Management e Innovation Systems, University of Salerno, Via Giovanni Paolo Ⅱ, 132, Fisciano, SA, Italy

2. 

Department of System Analysis, National Mining University, Yavornitskii av., 19, 49005 Dnipro, Ukraine

3. 

Institute for Applied System Analysis of National Academy of Sciences and Ministry of Education and Science of Ukraine, Peremogy av., 37/35, IASA, 03056 Kyiv, Ukraine

4. 

Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Via Giovanni Paolo Ⅱ, 132, Fisciano, SA, Italy

* Corresponding author: Rosanna Manzo

Received  December 2017 Revised  August 2018 Published  November 2018

We discuss a control constrained boundary optimal control problem for the Boussinesq-type system arising in the study of the dynamics of an arterial network. We suppose that the control object is described by an initial-boundary value problem for $ 1D $ system of pseudo-parabolic nonlinear equations with an unbounded coefficient in the principle part and the Robin-type of boundary conditions. The main question we study in this part of the paper is about the existence of optimal solutions and first-order optimality conditions.

Citation: Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027
References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Google Scholar

[2]

J. Alastruey, Propagation in the Cardiovascular System: Development, Validation and Clinical Applications, Ph.D thesis, Imperial College London, 2006.Google Scholar

[3]

R. C. CascavalC. D'ApiceM. P. D'Arienzo and R. Manzo, Boundary control for an arterial system, J. of Fluid Flow, Heat and Mass Transfer, 3 (2016), 25-33. doi: 10.11159/jffhmt.2016.004. Google Scholar

[4]

R. C. CascavalC. D'ApiceM. P. D'Arienzo and R. Manzo, Flow optimization of the vascular networks, Mathematical Biosciences and Engineering, 14 (2017), 607-624. doi: 10.3934/mbe.2017035. Google Scholar

[5]

C. D'ApiceM. P. D'ArienzoP. I. Kogut and R. Manzo, On boundary optimal control problem for an arterial system: Existence of feasible solutions, Journal of Evolution Equations, (2018), 1-42. doi: 10.1007/s00028-018-0460-4. Google Scholar

[6]

C. D'ApiceP.I. Kogut and R. Manzo, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains, Networks and Heterogeneous Media, 9 (2014), 501-518. doi: 10.3934/nhm.2014.9.501. Google Scholar

[7]

C. D'ApiceP. I. Kogut and R. Manzo, On optimization of a highly re-entrant production system, Networks and Heterogeneous Media, 11 (2016), 415-445. doi: 10.3934/nhm.2016003. Google Scholar

[8]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Mathods for Science and Technology, Vol. 5: Evolutional Problems I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1. Google Scholar

[9]

L. FormaggiaD. LamponiM. Tuveri and A. Veneziani, Numerical modeling of 1D arterial networks coupled with a lumped parameters, description of the heart, Comput. Methods Biomech. Biomed. Eng., 9 (2006), 273-288. doi: 10.1080/10255840600857767. Google Scholar

[10]

L. Formaggia, A. Quarteroni and A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Springer Verlag, Berlin, 2010.Google Scholar

[11]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. Google Scholar

[12]

F. C. Hoppensteadt and C. Peskin, Modeling and Simulation in Medicine and the Life Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-0-387-21571-6. Google Scholar

[13]

M. O. Korpusov and A. G. Sveshnikov, Nonlinear Functional Analysis and Mathematical Modelling in Physics: Methods of Nonlinear Operators, KRASAND, Moskov, 2011 (in Russian).Google Scholar

[14]

A. Kufner, Weighted Sobolev Spaces, Wiley & Sons, New York, 1985. Google Scholar

[15]

F. Liang, D. Guan and J. Alastruey, Determinant factors for arterial hemodynamics in hypertension: Theoretical insights from a computational model-based study, ASME Journal of Biomechanical Engineering, 140 (2018), 031006. doi: 10.1115/1.4038430. Google Scholar

[16]

D. MitsotakisD. Dutykh and L. Qian, Asymptotic nonlinear and dispersive pulsatile flow in elastic vessels with cylindrical symmetry, Computers & Mathematics with Applications, 75 (2018), 4022-4027. doi: 10.1016/j.camwa.2018.03.011. Google Scholar

[17]

M. S. OlufsenJ. T. OttesenH. T. TranL. M. EllweinL. A. Lipsitz and V. Novak, Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation, J. Appl. Physiol, 99 (2005), 1523-1537. doi: 10.1152/japplphysiol.00177.2005. Google Scholar

[18]

G. Pontrelli and E. Rossoni, Numerical modeling of the pressure wave propagation in the arterial flow, International Journal for Numerical Methods in Fluids, 43 (2003), 651-671. doi: 10.1002/fld.494. Google Scholar

[19]

A. QuarteroniA. Manzoni and C. Vergara, The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications, Acta Numerica, 16 (2017), 365-590. doi: 10.1017/S0962492917000046. Google Scholar

[20]

P. ReymondF. MerendaF. PerrenD. Rafenacht and N. Stergiopulos, Validation of a one-dimensional model of the systemic arterial tree, Am J Physiol Heart Circ Physiol., 297 (2009), H208-H222. doi: 10.1152/ajpheart.00037.2009. Google Scholar

[21]

S. J. SherwinL. FormaggiaJ. Peiro and V. Franke, Computational modeling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Internat. J. for Numerical Methods in Fluids, 43 (2003), 673-700. doi: 10.1002/fld.543. Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Google Scholar

[2]

J. Alastruey, Propagation in the Cardiovascular System: Development, Validation and Clinical Applications, Ph.D thesis, Imperial College London, 2006.Google Scholar

[3]

R. C. CascavalC. D'ApiceM. P. D'Arienzo and R. Manzo, Boundary control for an arterial system, J. of Fluid Flow, Heat and Mass Transfer, 3 (2016), 25-33. doi: 10.11159/jffhmt.2016.004. Google Scholar

[4]

R. C. CascavalC. D'ApiceM. P. D'Arienzo and R. Manzo, Flow optimization of the vascular networks, Mathematical Biosciences and Engineering, 14 (2017), 607-624. doi: 10.3934/mbe.2017035. Google Scholar

[5]

C. D'ApiceM. P. D'ArienzoP. I. Kogut and R. Manzo, On boundary optimal control problem for an arterial system: Existence of feasible solutions, Journal of Evolution Equations, (2018), 1-42. doi: 10.1007/s00028-018-0460-4. Google Scholar

[6]

C. D'ApiceP.I. Kogut and R. Manzo, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains, Networks and Heterogeneous Media, 9 (2014), 501-518. doi: 10.3934/nhm.2014.9.501. Google Scholar

[7]

C. D'ApiceP. I. Kogut and R. Manzo, On optimization of a highly re-entrant production system, Networks and Heterogeneous Media, 11 (2016), 415-445. doi: 10.3934/nhm.2016003. Google Scholar

[8]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Mathods for Science and Technology, Vol. 5: Evolutional Problems I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1. Google Scholar

[9]

L. FormaggiaD. LamponiM. Tuveri and A. Veneziani, Numerical modeling of 1D arterial networks coupled with a lumped parameters, description of the heart, Comput. Methods Biomech. Biomed. Eng., 9 (2006), 273-288. doi: 10.1080/10255840600857767. Google Scholar

[10]

L. Formaggia, A. Quarteroni and A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Springer Verlag, Berlin, 2010.Google Scholar

[11]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. Google Scholar

[12]

F. C. Hoppensteadt and C. Peskin, Modeling and Simulation in Medicine and the Life Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-0-387-21571-6. Google Scholar

[13]

M. O. Korpusov and A. G. Sveshnikov, Nonlinear Functional Analysis and Mathematical Modelling in Physics: Methods of Nonlinear Operators, KRASAND, Moskov, 2011 (in Russian).Google Scholar

[14]

A. Kufner, Weighted Sobolev Spaces, Wiley & Sons, New York, 1985. Google Scholar

[15]

F. Liang, D. Guan and J. Alastruey, Determinant factors for arterial hemodynamics in hypertension: Theoretical insights from a computational model-based study, ASME Journal of Biomechanical Engineering, 140 (2018), 031006. doi: 10.1115/1.4038430. Google Scholar

[16]

D. MitsotakisD. Dutykh and L. Qian, Asymptotic nonlinear and dispersive pulsatile flow in elastic vessels with cylindrical symmetry, Computers & Mathematics with Applications, 75 (2018), 4022-4027. doi: 10.1016/j.camwa.2018.03.011. Google Scholar

[17]

M. S. OlufsenJ. T. OttesenH. T. TranL. M. EllweinL. A. Lipsitz and V. Novak, Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation, J. Appl. Physiol, 99 (2005), 1523-1537. doi: 10.1152/japplphysiol.00177.2005. Google Scholar

[18]

G. Pontrelli and E. Rossoni, Numerical modeling of the pressure wave propagation in the arterial flow, International Journal for Numerical Methods in Fluids, 43 (2003), 651-671. doi: 10.1002/fld.494. Google Scholar

[19]

A. QuarteroniA. Manzoni and C. Vergara, The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications, Acta Numerica, 16 (2017), 365-590. doi: 10.1017/S0962492917000046. Google Scholar

[20]

P. ReymondF. MerendaF. PerrenD. Rafenacht and N. Stergiopulos, Validation of a one-dimensional model of the systemic arterial tree, Am J Physiol Heart Circ Physiol., 297 (2009), H208-H222. doi: 10.1152/ajpheart.00037.2009. Google Scholar

[21]

S. J. SherwinL. FormaggiaJ. Peiro and V. Franke, Computational modeling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Internat. J. for Numerical Methods in Fluids, 43 (2003), 673-700. doi: 10.1002/fld.543. Google Scholar

[1]

Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial & Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851

[2]

Miao Liu, Weike Wang. Global existence and pointwise estimates of solutions for the multidimensional generalized Boussinesq-type equation. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1203-1222. doi: 10.3934/cpaa.2014.13.1203

[3]

Sylvia Anicic. Existence theorem for a first-order Koiter nonlinear shell model. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1535-1545. doi: 10.3934/dcdss.2019106

[4]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

[5]

Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089

[6]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[7]

Mohammed Al Horani, Angelo Favini. First-order inverse evolution equations. Evolution Equations & Control Theory, 2014, 3 (3) : 355-361. doi: 10.3934/eect.2014.3.355

[8]

Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064

[9]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[10]

B. Bonnard, J.-B. Caillau, E. Trélat. Second order optimality conditions with applications. Conference Publications, 2007, 2007 (Special) : 145-154. doi: 10.3934/proc.2007.2007.145

[11]

Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065

[12]

Ansgar Jüngel, Ingrid Violet. First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 861-877. doi: 10.3934/dcdsb.2007.8.861

[13]

Xiaoling Guo, Zhibin Deng, Shu-Cherng Fang, Wenxun Xing. Quadratic optimization over one first-order cone. Journal of Industrial & Management Optimization, 2014, 10 (3) : 945-963. doi: 10.3934/jimo.2014.10.945

[14]

Pierre Fabrie, Alain Miranville. Exponential attractors for nonautonomous first-order evolution equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 225-240. doi: 10.3934/dcds.1998.4.225

[15]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[16]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[17]

Simone Fiori. Synchronization of first-order autonomous oscillators on Riemannian manifolds. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1725-1741. doi: 10.3934/dcdsb.2018233

[18]

Karine Adamy. Existence of solutions for a Boussinesq system on the half line and on a finite interval. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 25-49. doi: 10.3934/dcds.2011.29.25

[19]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[20]

Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (37)
  • HTML views (218)
  • Cited by (0)

Other articles
by authors

[Back to Top]