December  2018, 13(4): 549-565. doi: 10.3934/nhm.2018025

Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect

Department of Applied Mathematics, Donghua University, Shanghai, China

* Corresponding author: Linglong Du

Received  January 2018 Published  September 2018

Fund Project: The author is supported by Fundamental Research Funds for the Central Universities (No. 2232016D3-32), Natural Science Foundation of Shanghai (No. 18ZR1401300) and partly by National Natural Science Foundation of China (No. 11671075)

In this paper, we investigate the existence and long time behavior of the solution for the nonlinear visco-elastic damped wave equation in $\mathbb{R}^n_+$, provided that the initial data is sufficiently small. It is shown that for the long time, one can use the convected heat kernel to describe the hyperbolic wave transport structure and damped diffusive mechanism. The Green's function for the linear initial boundary value problem can be described in terms of the fundamental solution (for the full space problem) and reflected fundamental solution coupled with the boundary operator. Using the Duhamel's principle, we get the $ L^p $ decaying rate for the nonlinear solution $\partial_{{\bf x}}^{\alpha}u$ for $|\alpha|\le 1$.

Citation: Linglong Du. Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks & Heterogeneous Media, 2018, 13 (4) : 549-565. doi: 10.3934/nhm.2018025
References:
[1]

F. X. ChenB. l. Guo and P. Wang, Long time behavior of strongly damped nonlinear wave equations, J. Differ. Equ., 147 (1998), 231-241. doi: 10.1006/jdeq.1998.3447. Google Scholar

[2]

R. Chill and A. Haraux, An optimal estimate for the difference of solutions of two abstract evolution equations, J. Differ. Equ., 193 (2003), 385-395. doi: 10.1016/S0022-0396(03)00057-3. Google Scholar

[3]

S. J. DengW. K. Wang and S. H. Yu, Green's functions of wave equations in $R^n_+ × R_+$, Arch. Ration. Mech. Anal., 216 (2015), 881-903. doi: 10.1007/s00205-014-0821-2. Google Scholar

[4]

S. J. DengW. K. Wang and H. L. Zhao, Existence theory and Lp estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal.: Real World Appl., 11 (2010), 4404-4414. doi: 10.1016/j.nonrwa.2010.05.024. Google Scholar

[5]

S. J. Deng and W. K. Wang, Half space problem for Euler equations with damping in 3-D, J. Differ. Equ., 263 (2017), 7372-7411. doi: 10.1016/j.jde.2017.08.013. Google Scholar

[6]

S. J. Deng, Initial-boundary value problem for p-system with damping in half space, Nonlinear Anal., 143 (2016), 193-210. doi: 10.1016/j.na.2016.05.009. Google Scholar

[7]

S. J. Deng and S. H. Yu, Green's function and pointwise convergence for compressible Navier-Stokes equations, Quart. Appl. Math., 75 (2017), 433-503. doi: 10.1090/qam/1461. Google Scholar

[8]

L. L. Du and H. T. Wang, Long time wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst., 38 (2018), 1349-1363. doi: 10.3934/dcds.2018055. Google Scholar

[9]

L. L. Du and C. X. Ren, Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $R^n_+$, preprint.Google Scholar

[10]

L. L. Du, Initial boundary value problem of Euler equations with damping in $\mathbb{R}^n_+$, Nonlinear Anal., 176 (2018), 157-177. Google Scholar

[11]

D. Hoff and K. Zumbrun, Pointwise decay estimates for multi-dimensional Navier-Stokes diffusion waves, Z. angew. Math. Phys., 48 (1997), 1-18. doi: 10.1007/s000330050049. Google Scholar

[12]

R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Differ. Equ., 257 (2014), 2159-2177. doi: 10.1016/j.jde.2014.05.031. Google Scholar

[13]

R. Ikehata, Some remarks on the asymptotic profiles of solutions for strongly damped wave equations on the 1-D half space, J. Math. Anal. Appl., 421 (2015), 905-916. doi: 10.1016/j.jmaa.2014.07.055. Google Scholar

[14]

R. Ikehata and Y. Inoue, Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain, Nonlinear Anal., 69 (2008), 1396-1401. doi: 10.1016/j.na.2006.10.038. Google Scholar

[15]

R. Ikehata and A. Sawada, Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms, Asymptot. Anal., 98 (2016), 59-77. doi: 10.3233/ASY-161361. Google Scholar

[16]

R. Ikehata and H. Takeda, Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal., 148 (2017), 228-253. doi: 10.1016/j.na.2016.10.008. Google Scholar

[17]

Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the Compressible Navier-Stokes Equations on the half space, Arch. Ration. Mech. Anal., 177 (2005), 231-330. doi: 10.1007/s00205-005-0365-6. Google Scholar

[18]

T. P. Liu and S. H. Yu, Green's function of Boltzmann equation, 3-D waves, Bullet. Inst. of Math. Academia Sinica, 1 (2006), 1-78. Google Scholar

[19]

T. P. Liu and S. H. Yu, On boundary relation for some dissipative systems, Bullet. Inst. of Math. Academia Sinica, 6 (2011), 245-267. Google Scholar

[20]

T. P. Liu and S. H. Yu, Boundary wave propagator for compressible Navier-Stokes equations, Found. Comput. Math., 14 (2014), 1287-1335. doi: 10.1007/s10208-013-9180-x. Google Scholar

[21]

P. Marcatia and K. Nishihara, The Lp-Lq estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differ. Equ., 191 (2003), 445-469. doi: 10.1016/S0022-0396(03)00026-3. Google Scholar

[22]

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464. doi: 10.1007/BF01214738. Google Scholar

[23]

T. Narazaki, Lp-Lq estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56 (2004), 586-626. doi: 10.2969/jmsj/1191418647. Google Scholar

[24]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418. doi: 10.1016/0362-546X(85)90001-X. Google Scholar

[25]

I. Segal, Quantization and dispersion for nonlinear relativistic equations, in Mathematical Theory of Elementary Particles, MIT Press, Cambridge, MA, (1966), 79–108. Google Scholar

[26]

Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation, Math. Meth. Appl. Sci., 23 (2000), 203-226. doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M. Google Scholar

[27]

S. X. Tang, J. Qi and J. Zhang, Formation tracking control for multi-agent systems: a waveequation based approach, preprint.Google Scholar

[28]

Y. UedaT. Nakamura and S. Kawashima, Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space, Kinet. Relat. Models, 1 (2008), 49-64. doi: 10.3934/krm.2008.1.49. Google Scholar

[29]

H. T. Wang, Some Studies in Initial-Boundary Value Problem, Ph.D thesis, National University of Singapore, 2014.Google Scholar

[30]

G. F. Webb, Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canad. J. Math., 32 (1980), 631-643. doi: 10.4153/CJM-1980-049-5. Google Scholar

[31]

R. Z. Xu and Y. C. Liu, Asymptotic behavior of solutions for initial-boundary value problems for strongly damped nonlinear wave equations, Nonlinear Anal., 69 (2008), 2492-2495. doi: 10.1016/j.na.2007.08.027. Google Scholar

[32]

Z. J. Yang, Initial boundary value problem for a class of nonlinear strongly damped wave equations, Math. Meth. Appl. Sci., 26 (2003), 1047-1066. doi: 10.1002/mma.412. Google Scholar

[33]

S. F. Zhou, Dimension of the global attractor for strongly damped nonlinear wave equation, J. Math. Anal. Appl., 233 (1999), 102-115. doi: 10.1006/jmaa.1999.6269. Google Scholar

show all references

References:
[1]

F. X. ChenB. l. Guo and P. Wang, Long time behavior of strongly damped nonlinear wave equations, J. Differ. Equ., 147 (1998), 231-241. doi: 10.1006/jdeq.1998.3447. Google Scholar

[2]

R. Chill and A. Haraux, An optimal estimate for the difference of solutions of two abstract evolution equations, J. Differ. Equ., 193 (2003), 385-395. doi: 10.1016/S0022-0396(03)00057-3. Google Scholar

[3]

S. J. DengW. K. Wang and S. H. Yu, Green's functions of wave equations in $R^n_+ × R_+$, Arch. Ration. Mech. Anal., 216 (2015), 881-903. doi: 10.1007/s00205-014-0821-2. Google Scholar

[4]

S. J. DengW. K. Wang and H. L. Zhao, Existence theory and Lp estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal.: Real World Appl., 11 (2010), 4404-4414. doi: 10.1016/j.nonrwa.2010.05.024. Google Scholar

[5]

S. J. Deng and W. K. Wang, Half space problem for Euler equations with damping in 3-D, J. Differ. Equ., 263 (2017), 7372-7411. doi: 10.1016/j.jde.2017.08.013. Google Scholar

[6]

S. J. Deng, Initial-boundary value problem for p-system with damping in half space, Nonlinear Anal., 143 (2016), 193-210. doi: 10.1016/j.na.2016.05.009. Google Scholar

[7]

S. J. Deng and S. H. Yu, Green's function and pointwise convergence for compressible Navier-Stokes equations, Quart. Appl. Math., 75 (2017), 433-503. doi: 10.1090/qam/1461. Google Scholar

[8]

L. L. Du and H. T. Wang, Long time wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst., 38 (2018), 1349-1363. doi: 10.3934/dcds.2018055. Google Scholar

[9]

L. L. Du and C. X. Ren, Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $R^n_+$, preprint.Google Scholar

[10]

L. L. Du, Initial boundary value problem of Euler equations with damping in $\mathbb{R}^n_+$, Nonlinear Anal., 176 (2018), 157-177. Google Scholar

[11]

D. Hoff and K. Zumbrun, Pointwise decay estimates for multi-dimensional Navier-Stokes diffusion waves, Z. angew. Math. Phys., 48 (1997), 1-18. doi: 10.1007/s000330050049. Google Scholar

[12]

R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Differ. Equ., 257 (2014), 2159-2177. doi: 10.1016/j.jde.2014.05.031. Google Scholar

[13]

R. Ikehata, Some remarks on the asymptotic profiles of solutions for strongly damped wave equations on the 1-D half space, J. Math. Anal. Appl., 421 (2015), 905-916. doi: 10.1016/j.jmaa.2014.07.055. Google Scholar

[14]

R. Ikehata and Y. Inoue, Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain, Nonlinear Anal., 69 (2008), 1396-1401. doi: 10.1016/j.na.2006.10.038. Google Scholar

[15]

R. Ikehata and A. Sawada, Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms, Asymptot. Anal., 98 (2016), 59-77. doi: 10.3233/ASY-161361. Google Scholar

[16]

R. Ikehata and H. Takeda, Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal., 148 (2017), 228-253. doi: 10.1016/j.na.2016.10.008. Google Scholar

[17]

Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the Compressible Navier-Stokes Equations on the half space, Arch. Ration. Mech. Anal., 177 (2005), 231-330. doi: 10.1007/s00205-005-0365-6. Google Scholar

[18]

T. P. Liu and S. H. Yu, Green's function of Boltzmann equation, 3-D waves, Bullet. Inst. of Math. Academia Sinica, 1 (2006), 1-78. Google Scholar

[19]

T. P. Liu and S. H. Yu, On boundary relation for some dissipative systems, Bullet. Inst. of Math. Academia Sinica, 6 (2011), 245-267. Google Scholar

[20]

T. P. Liu and S. H. Yu, Boundary wave propagator for compressible Navier-Stokes equations, Found. Comput. Math., 14 (2014), 1287-1335. doi: 10.1007/s10208-013-9180-x. Google Scholar

[21]

P. Marcatia and K. Nishihara, The Lp-Lq estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differ. Equ., 191 (2003), 445-469. doi: 10.1016/S0022-0396(03)00026-3. Google Scholar

[22]

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464. doi: 10.1007/BF01214738. Google Scholar

[23]

T. Narazaki, Lp-Lq estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56 (2004), 586-626. doi: 10.2969/jmsj/1191418647. Google Scholar

[24]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418. doi: 10.1016/0362-546X(85)90001-X. Google Scholar

[25]

I. Segal, Quantization and dispersion for nonlinear relativistic equations, in Mathematical Theory of Elementary Particles, MIT Press, Cambridge, MA, (1966), 79–108. Google Scholar

[26]

Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation, Math. Meth. Appl. Sci., 23 (2000), 203-226. doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M. Google Scholar

[27]

S. X. Tang, J. Qi and J. Zhang, Formation tracking control for multi-agent systems: a waveequation based approach, preprint.Google Scholar

[28]

Y. UedaT. Nakamura and S. Kawashima, Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space, Kinet. Relat. Models, 1 (2008), 49-64. doi: 10.3934/krm.2008.1.49. Google Scholar

[29]

H. T. Wang, Some Studies in Initial-Boundary Value Problem, Ph.D thesis, National University of Singapore, 2014.Google Scholar

[30]

G. F. Webb, Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canad. J. Math., 32 (1980), 631-643. doi: 10.4153/CJM-1980-049-5. Google Scholar

[31]

R. Z. Xu and Y. C. Liu, Asymptotic behavior of solutions for initial-boundary value problems for strongly damped nonlinear wave equations, Nonlinear Anal., 69 (2008), 2492-2495. doi: 10.1016/j.na.2007.08.027. Google Scholar

[32]

Z. J. Yang, Initial boundary value problem for a class of nonlinear strongly damped wave equations, Math. Meth. Appl. Sci., 26 (2003), 1047-1066. doi: 10.1002/mma.412. Google Scholar

[33]

S. F. Zhou, Dimension of the global attractor for strongly damped nonlinear wave equation, J. Math. Anal. Appl., 233 (1999), 102-115. doi: 10.1006/jmaa.1999.6269. Google Scholar

[1]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[2]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[3]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[4]

Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244

[5]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[6]

Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917

[7]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[8]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

[9]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[10]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[11]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[12]

Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015

[13]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[14]

Haifeng Hu, Kaijun Zhang. Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1601-1626. doi: 10.3934/dcdsb.2014.19.1601

[15]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[16]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[17]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

[18]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[19]

Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039

[20]

Michael Renardy. A backward uniqueness result for the wave equation with absorbing boundary conditions. Evolution Equations & Control Theory, 2015, 4 (3) : 347-353. doi: 10.3934/eect.2015.4.347

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (43)
  • HTML views (263)
  • Cited by (0)

Other articles
by authors

[Back to Top]