• Previous Article
    Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication
  • NHM Home
  • This Issue
  • Next Article
    Perturbations of minimizing movements and curves of maximal slope
September 2018, 13(3): 409-421. doi: 10.3934/nhm.2018018

Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow

1. 

Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

2. 

Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, NO-0316 Oslo, Norway

* Corresponding author: Helge Holden

Received  September 2017 Revised  January 2018 Published  July 2018

Fund Project: Research was supported by the grant Waves and Nonlinear Phenomena (WaNP) from the Research Council of Norway. The research was done while the authors were at Institut MittagLeffler, Stockholm

We show how to view the standard Follow-the-Leader (FtL) model as a numerical method to compute numerically the solution of the Lighthill-Whitham-Richards (LWR) model for traffic flow. As a result we offer a simple proof that FtL models converge to the LWR model for traffic flow when traffic becomes dense. The proof is based on techniques used in the analysis of numerical schemes for conservation laws, and the equivalence of weak entropy solutions of conservation laws in the Lagrangian and Eulerian formulation.

Citation: Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks & Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018
References:
[1]

B. ArgallE. CheleshkinJ. M. GreenbergC. Hinde and P.-J. Lin, A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002), 149-168. doi: 10.1137/S0036139901391215.

[2]

A. AwA. KlarT. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955.

[3]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Sem. Math. Univ. Padova, 131 (2014), 217-235. doi: 10.4171/RSMUP/131-13.

[4]

M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Math. Comp., 34 (1980), 1-21. doi: 10.1090/S0025-5718-1980-0551288-3.

[5]

E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, Networks and Heterogeneous Media, 11 (2016), 395-413. doi: 10.3934/nhm.2016002.

[6]

M. Di FrancescoS. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Boll. Unione Mat. Ital., 10 (2017), 487-501. doi: 10.1007/s40574-017-0132-2.

[7]

M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, A deterministic particle approximation for non-linear conservation laws, In N. Bellomo, P. Degond, E. Tadmor (eds. ) Active Particles, Birkhäuser, 1 (2017), 333-378.

[8]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4.

[9]

P. Goatin and F. Rossi, A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, Comm. Math. Sci., 15 (2017), 261-287. doi: 10.4310/CMS.2017.v15.n1.a12.

[10]

K. Han, T. Yaob and T. L. Friesz, Lagrangian-based hydrodynamic model: Freeway traffic estimation, Preprint, arXiv: 1211.4619v1, 2012.

[11]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, New York, 2015, Second edition. doi: 10.1007/978-3-662-47507-2.

[12]

H. Holden and N. H. Risebro, The continuum limit of Follow-the-Leader models — a short proof, Discrete Cont. Dyn. Syst. A, 38 (2018), 715-722. doi: 10.3934/dcds.2018031.

[13]

M. J. Lighthill and G. B. Whitham, Kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. (London), Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.

[14]

P. I. Richards, Shockwaves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[15]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Cont. Dyn. Syst. Series S, 7 (2014), 579-591. doi: 10.3934/dcdss.2014.7.579.

[16]

D. H. Wagner, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, J. Diff. Eqn., 68 (1987), 118-136. doi: 10.1016/0022-0396(87)90188-4.

show all references

References:
[1]

B. ArgallE. CheleshkinJ. M. GreenbergC. Hinde and P.-J. Lin, A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002), 149-168. doi: 10.1137/S0036139901391215.

[2]

A. AwA. KlarT. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955.

[3]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Sem. Math. Univ. Padova, 131 (2014), 217-235. doi: 10.4171/RSMUP/131-13.

[4]

M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Math. Comp., 34 (1980), 1-21. doi: 10.1090/S0025-5718-1980-0551288-3.

[5]

E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, Networks and Heterogeneous Media, 11 (2016), 395-413. doi: 10.3934/nhm.2016002.

[6]

M. Di FrancescoS. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Boll. Unione Mat. Ital., 10 (2017), 487-501. doi: 10.1007/s40574-017-0132-2.

[7]

M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo, A deterministic particle approximation for non-linear conservation laws, In N. Bellomo, P. Degond, E. Tadmor (eds. ) Active Particles, Birkhäuser, 1 (2017), 333-378.

[8]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4.

[9]

P. Goatin and F. Rossi, A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, Comm. Math. Sci., 15 (2017), 261-287. doi: 10.4310/CMS.2017.v15.n1.a12.

[10]

K. Han, T. Yaob and T. L. Friesz, Lagrangian-based hydrodynamic model: Freeway traffic estimation, Preprint, arXiv: 1211.4619v1, 2012.

[11]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, New York, 2015, Second edition. doi: 10.1007/978-3-662-47507-2.

[12]

H. Holden and N. H. Risebro, The continuum limit of Follow-the-Leader models — a short proof, Discrete Cont. Dyn. Syst. A, 38 (2018), 715-722. doi: 10.3934/dcds.2018031.

[13]

M. J. Lighthill and G. B. Whitham, Kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. (London), Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.

[14]

P. I. Richards, Shockwaves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[15]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Cont. Dyn. Syst. Series S, 7 (2014), 579-591. doi: 10.3934/dcdss.2014.7.579.

[16]

D. H. Wagner, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, J. Diff. Eqn., 68 (1987), 118-136. doi: 10.1016/0022-0396(87)90188-4.

Figure 1.  Left: the Lagrangian grid $\{ (t^n, x_{i-1/2}) \}_{i = 1}^N$. Right: the Eulerian grid $\{ (t^n, z^n_{i-1/2}) \}_{i = 1}^N$. In both cases $n = 0, \ldots, 40$
Figure 2.  The approximate density $\rho_\ell$ for $t = 0$ and $t = 2$ in Eulerian coordinates
[1]

Wen Shen. Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks & Heterogeneous Media, 2018, 13 (3) : 449-478. doi: 10.3934/nhm.2018020

[2]

Helge Holden, Nils Henrik Risebro. The continuum limit of Follow-the-Leader models — a short proof. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 715-722. doi: 10.3934/dcds.2018031

[3]

Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond. Time-delayed follow-the-leader model for pedestrians walking in line. Networks & Heterogeneous Media, 2015, 10 (3) : 579-608. doi: 10.3934/nhm.2015.10.579

[4]

Elena Rossi. A justification of a LWR model based on a follow the leader description. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 579-591. doi: 10.3934/dcdss.2014.7.579

[5]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks & Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57

[6]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[7]

Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108

[8]

Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks & Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813

[9]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670

[10]

Xiaoming Wang. On the coupled continuum pipe flow model (CCPF) for flows in karst aquifer. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 489-501. doi: 10.3934/dcdsb.2010.13.489

[11]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[12]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[13]

Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401

[14]

Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060

[15]

Stefano Villa, Paola Goatin, Christophe Chalons. Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3921-3952. doi: 10.3934/dcdsb.2017202

[16]

Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2011, 6 (4) : 681-694. doi: 10.3934/nhm.2011.6.681

[17]

Michael Herty, Adrian Fazekas, Giuseppe Visconti. A two-dimensional data-driven model for traffic flow on highways. Networks & Heterogeneous Media, 2018, 13 (2) : 217-240. doi: 10.3934/nhm.2018010

[18]

Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279

[19]

Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks & Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013

[20]

Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics. Networks & Heterogeneous Media, 2007, 2 (4) : 661-694. doi: 10.3934/nhm.2007.2.661

2017 Impact Factor: 1.187

Article outline

Figures and Tables

[Back to Top]