September 2018, 13(3): 379-407. doi: 10.3934/nhm.2018017

Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication

1. 

Department of Mathematics and Institute of Applied Mathematics, Inha University, Incheon 22212, Korea

2. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea

3. 

Korea Institute for Advanced Study, Hoegiro 87, Seoul 02455, Korea

4. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

* Corresponding author

Received  September 2017 Revised  October 2017 Published  July 2018

We study dynamical behaviors of the ensemble of thermomechanical Cucker-Smale (in short TCS) particles with singular power-law communication weights in velocity and temperatures. For the particle TCS model, we present several sufficient frameworks for the global regularity of solution and a finite-time breakdown depending on the blow-up exponents in the power-law communication weights at the origin where the relative spatial distances become zero. More precisely, when the blow-up exponent in velocity communication weight is greater than unity and the blow-up exponent in temperature communication weights is more than twice of blow-up exponent in velocity communication, we show that there will be no finite time collision between particles, unless there are collisions initially. In contrast, when the blow-up exponent of velocity communication weight is smaller than unity, we show that there can be a collision in finite time. For the kinetic TCS equation, we present a local-in-time existence of a unique weak solution using the suitable regularization and compactness arguments.

Citation: Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017
References:
[1]

S. M. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Comm. Math. Sci., 10 (2012), 625-643. doi: 10.4310/CMS.2012.v10.n2.a10.

[2]

J. A. Carrillo, Y. -P. Choi and M. Hauray, Local well-posedness of the generalized CuckerSmale model with singular kernels, Mathematical Modeling of Complex Systems, 17-35, ESAIM Proc. Surveys, 47, EDP Sci., Les Ulis, 2014. doi: 10.1051/proc/201447002.

[3]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal.-Real., 37 (2017), 317-328. doi: 10.1016/j.nonrwa.2017.02.017.

[4]

J. A. Carrillo, Y. -P. Choi and S. Pérez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in Active Particles Vol. Ⅰ - Advances in Theory, Models, Applications(tentative title), Series: Modeling and Simulation in Science and Technology, (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhäuser Basel, (2017), 259-298.

[5]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290.

[6]

Y.-P. Choi, Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces, Nonlinearity, 29 (2016), 1887-1916. doi: 10.1088/0951-7715/29/7/1887.

[7]

Y. -P. Choi, S. -Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles Vol. Ⅰ - Advances in Theory, Models, Applications(tentative title), Series: Modeling and Simulation in Science and Technology, (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhäuser Basel, (2017), 299-331.

[8]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automatic Control, 55 (2010), 1238-1243. doi: 10.1109/TAC.2010.2042355.

[9]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[10]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145. doi: 10.1007/s00220-010-1110-z.

[11]

M. FornasierJ. Haskovec and G. Toscani, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Physica D, 240 (2011), 21-31. doi: 10.1016/j.physd.2010.08.003.

[12]

S. -Y. Ha, J. Kim, C. Min, T. Ruggeri and X. Zhang, Uniform stability and mean-field limit of thermodynamic Cucker-Smale model, Submitted.

[13]

S.-Y. HaJ. Kim and T. Ruggeri, Emergent behaviors of Thermodynamic Cucker-Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121. doi: 10.1137/17M111064X.

[14]

S.-Y. HaJ. Kim and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181. doi: 10.3934/krm.2018045.

[15]

S.-Y. HaB. Kwon and M.-J. Kang, Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain, SIAM. J. Math. Anal., 47 (2015), 3813-3831. doi: 10.1137/140984403.

[16]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469. doi: 10.4310/CMS.2009.v7.n2.a9.

[17]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325. doi: 10.4310/CMS.2009.v7.n2.a2.

[18]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415.

[19]

S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. An., 223 (2017), 1397-1425. doi: 10.1007/s00205-016-1062-3.

[20]

Z. Li and S.-Y. Ha, On the Cucker-Smale flocking with alternating leaders, Quart. Appl. Math., 73 (2015), 693-709. doi: 10.1090/qam/1401.

[21]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174. doi: 10.1137/100791774.

[22]

S. Motsch and E. Tadmor, Heterophilious dynamics: Enhanced Consensus, SIAM Review, 56 (2014), 577-621. doi: 10.1137/120901866.

[23]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Statist. Phys., 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9.

[24]

P. B. Mucha and J. Peszek, The Cucker-Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308. doi: 10.1007/s00205-017-1160-x.

[25]

J. Peszek, Discrete Cucker-Smale flocking model with a weakly singular weight, SIAM J. Math. Anal., 47 (2015), 3671-3686. doi: 10.1137/15M1009299.

[26]

J. Peszek, Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differ. Equat., 257 (2014), 2900-2925. doi: 10.1016/j.jde.2014.06.003.

[27]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719. doi: 10.1137/060673254.

[28]

J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Physical Review E., 58 (1998), 4828-4858. doi: 10.1103/PhysRevE.58.4828.

[29]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174. doi: 10.1137/S0036139903437424.

[30]

T. VicsekCzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.

[31]

C. Villani, Topics in Optimal Transportation, American Mathematical Society, 2003. doi: 10.1007/b12016.

[32]

C. Villani, Optimal Transport, Old and New, Springer-Verlag, 2009. doi: 10.1007/978-3-540-71050-9.

show all references

References:
[1]

S. M. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Comm. Math. Sci., 10 (2012), 625-643. doi: 10.4310/CMS.2012.v10.n2.a10.

[2]

J. A. Carrillo, Y. -P. Choi and M. Hauray, Local well-posedness of the generalized CuckerSmale model with singular kernels, Mathematical Modeling of Complex Systems, 17-35, ESAIM Proc. Surveys, 47, EDP Sci., Les Ulis, 2014. doi: 10.1051/proc/201447002.

[3]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal.-Real., 37 (2017), 317-328. doi: 10.1016/j.nonrwa.2017.02.017.

[4]

J. A. Carrillo, Y. -P. Choi and S. Pérez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in Active Particles Vol. Ⅰ - Advances in Theory, Models, Applications(tentative title), Series: Modeling and Simulation in Science and Technology, (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhäuser Basel, (2017), 259-298.

[5]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290.

[6]

Y.-P. Choi, Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces, Nonlinearity, 29 (2016), 1887-1916. doi: 10.1088/0951-7715/29/7/1887.

[7]

Y. -P. Choi, S. -Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles Vol. Ⅰ - Advances in Theory, Models, Applications(tentative title), Series: Modeling and Simulation in Science and Technology, (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhäuser Basel, (2017), 299-331.

[8]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automatic Control, 55 (2010), 1238-1243. doi: 10.1109/TAC.2010.2042355.

[9]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[10]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145. doi: 10.1007/s00220-010-1110-z.

[11]

M. FornasierJ. Haskovec and G. Toscani, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Physica D, 240 (2011), 21-31. doi: 10.1016/j.physd.2010.08.003.

[12]

S. -Y. Ha, J. Kim, C. Min, T. Ruggeri and X. Zhang, Uniform stability and mean-field limit of thermodynamic Cucker-Smale model, Submitted.

[13]

S.-Y. HaJ. Kim and T. Ruggeri, Emergent behaviors of Thermodynamic Cucker-Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121. doi: 10.1137/17M111064X.

[14]

S.-Y. HaJ. Kim and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181. doi: 10.3934/krm.2018045.

[15]

S.-Y. HaB. Kwon and M.-J. Kang, Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain, SIAM. J. Math. Anal., 47 (2015), 3813-3831. doi: 10.1137/140984403.

[16]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469. doi: 10.4310/CMS.2009.v7.n2.a9.

[17]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325. doi: 10.4310/CMS.2009.v7.n2.a2.

[18]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415.

[19]

S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. An., 223 (2017), 1397-1425. doi: 10.1007/s00205-016-1062-3.

[20]

Z. Li and S.-Y. Ha, On the Cucker-Smale flocking with alternating leaders, Quart. Appl. Math., 73 (2015), 693-709. doi: 10.1090/qam/1401.

[21]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174. doi: 10.1137/100791774.

[22]

S. Motsch and E. Tadmor, Heterophilious dynamics: Enhanced Consensus, SIAM Review, 56 (2014), 577-621. doi: 10.1137/120901866.

[23]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Statist. Phys., 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9.

[24]

P. B. Mucha and J. Peszek, The Cucker-Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308. doi: 10.1007/s00205-017-1160-x.

[25]

J. Peszek, Discrete Cucker-Smale flocking model with a weakly singular weight, SIAM J. Math. Anal., 47 (2015), 3671-3686. doi: 10.1137/15M1009299.

[26]

J. Peszek, Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differ. Equat., 257 (2014), 2900-2925. doi: 10.1016/j.jde.2014.06.003.

[27]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719. doi: 10.1137/060673254.

[28]

J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Physical Review E., 58 (1998), 4828-4858. doi: 10.1103/PhysRevE.58.4828.

[29]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174. doi: 10.1137/S0036139903437424.

[30]

T. VicsekCzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.

[31]

C. Villani, Topics in Optimal Transportation, American Mathematical Society, 2003. doi: 10.1007/b12016.

[32]

C. Villani, Optimal Transport, Old and New, Springer-Verlag, 2009. doi: 10.1007/978-3-540-71050-9.

Figure 1.  Initial configuration
[1]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[2]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[3]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[4]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[5]

Ioannis Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5245-5260. doi: 10.3934/dcds.2018232

[6]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[7]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[8]

Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040

[9]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2763-2793. doi: 10.3934/dcds.2018116

[10]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[11]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[12]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

[13]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[14]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[15]

Laure Pédèches. Asymptotic properties of various stochastic Cucker-Smale dynamics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2731-2762. doi: 10.3934/dcds.2018115

[16]

Le Li, Lihong Huang, Jianhong Wu. Cascade flocking with free-will. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 497-522. doi: 10.3934/dcdsb.2016.21.497

[17]

Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007

[18]

Roman Shvydkoy, Eitan Tadmor. Eulerian dynamics with a commutator forcing Ⅱ: Flocking. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5503-5520. doi: 10.3934/dcds.2017239

[19]

Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic & Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415

[20]

Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Long-time behaviour of a thermomechanical model for adhesive contact. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 273-309. doi: 10.3934/dcdss.2011.4.273

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (46)
  • HTML views (97)
  • Cited by (0)

Other articles
by authors

[Back to Top]