June 2018, 13(2): 241-260. doi: 10.3934/nhm.2018011

Stability and implementation of a cycle-based max pressure controller for signalized traffic networks

1. 

Dept of Civil and Environmental Engineering, Univ. of California, Berkeley, Berkeley, CA, USA

2. 

Dept. of Operations Research and Financial Engineering, Princeton University, Princeton, NJ, USA

3. 

TSS-Transport Simulation Systems, Barcelona, Spain

4. 

Dept of Civil and Environmental Engineering, Dept. of Electrical Engineering and Computer Science, Univ. of California, Berkeley, Berkeley, CA, USA

Received  May 2016 Revised  February 2018 Published  May 2018

Fund Project: This work was funded by the California Department of Transportation under the Connected Corridors program

Intelligent use of network capacity via responsive signal control will become increasingly essential as congestion increases on urban roadways. Existing adaptive control systems require lengthy location-specific tuning procedures or expensive central communications infrastructure. Previous theoretical work proposed the application of a max pressure controller to maximize network throughput in a distributed manner with minimal calibration. Yet this algorithm as originally formulated has unpractical hardware and safety constraints. We fundamentally alter the formulation of the max pressure controller to a setting where the actuation can only update once per multiple time steps of the modeled dynamics. This is motivated by the case of a traffic signal that can only update green splits based on observed link-counts once per "cycle time" of 60-120 seconds. Furthermore, we extend the domain of allowable actuations from a single signal phase to any convex combination of available signal phases to model intra-cycle signal changes dictated by pre-selected cycle green splits. We show that this extended max pressure controller will stabilize a vertical queueing network given restrictions on admissible demand flows that are slightly stronger than those suggested in the original formulation of max pressure. We ultimately apply our cycle-based extension of max pressure to a simulation of an existing arterial network and provide comparison to the control policy that is currently deployed at the modeled location.

Citation: Leah Anderson, Thomas Pumir, Dimitrios Triantafyllos, Alexandre M. Bayen. Stability and implementation of a cycle-based max pressure controller for signalized traffic networks. Networks & Heterogeneous Media, 2018, 13 (2) : 241-260. doi: 10.3934/nhm.2018011
References:
[1]

K. AboudolasM. Papageorgiou and E. Kosmatopoulos, Store-and-forward based methods for the signal control problem in large-scale congested urban networks, Transportation Research Part C: Emerging Technologies, 17 (2009), 163-174. doi: 10.1016/j.trc.2008.10.002.

[2]

R. E. Allsop, Estimating the traffic capacity of a signalized road junction, Transportation Research, 6 (1972), 245-255. doi: 10.1016/0041-1647(72)90017-2.

[3]

M. AndrewsK. KumaranK. RamananA. StolyarR. Vijayakumar and P. Whiting, Scheduling in a queuing system with asynchronously varying service rates, Probability in the Engineering and Informational Sciences, 18 (2004), 191-217. doi: 10.1017/S0269964804182041.

[4]

R. Brockett, Stabilization of motor networks, in Proceedings of the 34th IEEE Conference on Decision and Control, 1995, 1484–1488. doi: 10.1109/CDC.1995.480312.

[5]

J. G. Dai and W. Q. Lin, Maximum pressure policies in stochastic processing networks, Operations Research, 53 (2005), 197-218. doi: 10.1287/opre.1040.0170.

[6]

E. J. Davison and U. Ozguner, Decentralized control of traffic networks, IEEE Transactions on Systems, Man, and Cybernetics, 13 (1983), 476-487. doi: 10.1109/TAC.1983.1103296.

[7]

M. Egerstedt and Y. Wardi, Multi-process control using queuing theory, in Proceedings of the 41st IEEE Conference on Decision and Control, 2002, 1991–1996. doi: 10.1109/CDC.2002.1184820.

[8]

P. Giaccone, E. Leonardi and D. Shah, On the maximal throughput of networks with finite buffers and its application to buffered crossbars, in Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies, 2005,971–980. doi: 10.1109/INFCOM.2005.1498326.

[9]

P. B. Hunt, D. I. Robertson, R. D. Bretherton and R. I. Winton, SCOOT - a Traffic Responsive Method of Coordinating Signals, Transport and Road Research Laboratory, UK, 1981.

[10]

H. Ishii and B. A. Francis, Stabilizing a linear system by switching control with dwell time, IEEE Trans. Automat. Control, 47 (2002), 1962-1973. doi: 10.1109/TAC.2002.805689.

[11]

M. J. NeelyE. Modiano and C. E. Rohrs, Dynamic power allocation and routing for time-varying wireless networks, IEEE Journal on Selected Areas in Communications, 23 (2005), 89-103.

[12]

M. Pajic, S. Sundaram and G. J. Pappas, Stabilizability over Deterministic Relay Networks, in Proceedings of the 52nd IEEE Conference on Decision and Control, 2013. doi: 10.1109/CDC.2013.6760504.

[13]

A. G. Sims and K. W. Dobinson, The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits, IEEE Transactions on Vehicular Technology, 29 (1980), 130-137. doi: 10.1109/T-VT.1980.23833.

[14]

A. L. Stolyar, MaxWeight scheduling in a generalized switch: State space collapse and workload minimization in heavy traffic, Annals of Applied Probability, 14 (2004), 1-53. doi: 10.1214/aoap/1075828046.

[15]

L. Tassiulas, Adaptive back-pressure congestion control-based on local information, IEEE Transactions on Automatic Control, 40 (1995), 236-250. doi: 10.1109/9.341781.

[16]

L. Tassiulas and A. Ephremides, Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks, IEEE Transactions on Automatic Control, 37 (1992), 1936-1948. doi: 10.1109/9.182479.

[17]

M. van den Berg, A. Hegyi, B. De Schutter and H. Hellendoorn, A macroscopic traffic flow model for integrated control of freeway and urban traffic networks, in Proceedings of the 42nd IEEE Conference on Decision and Control, 2003, 2774–2779.

[18]

P. Varaiya, Max pressure control of a network of signalized intersections, Transportation Research Part C: Emerging Technologies, 36 (2013), 177-195. doi: 10.1016/j.trc.2013.08.014.

[19]

T. Wongpiromsarn, T. Uthaicharoenpong, Y. Wang, E. Frazzoli and D. Wang, Distributed traffic signal control for maximum network throughput, in Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems, 2012,588–595. doi: 10.1109/ITSC.2012.6338817.

[20]

H. M. ZhangY. M. Nie and Z. S. Qian, Modelling network flow with and without link interactions: The cases of point queue, spatial queue and cell transmission model, Transportmetrica B: Transport Dynamics, 1 (2013), 33-51.

show all references

References:
[1]

K. AboudolasM. Papageorgiou and E. Kosmatopoulos, Store-and-forward based methods for the signal control problem in large-scale congested urban networks, Transportation Research Part C: Emerging Technologies, 17 (2009), 163-174. doi: 10.1016/j.trc.2008.10.002.

[2]

R. E. Allsop, Estimating the traffic capacity of a signalized road junction, Transportation Research, 6 (1972), 245-255. doi: 10.1016/0041-1647(72)90017-2.

[3]

M. AndrewsK. KumaranK. RamananA. StolyarR. Vijayakumar and P. Whiting, Scheduling in a queuing system with asynchronously varying service rates, Probability in the Engineering and Informational Sciences, 18 (2004), 191-217. doi: 10.1017/S0269964804182041.

[4]

R. Brockett, Stabilization of motor networks, in Proceedings of the 34th IEEE Conference on Decision and Control, 1995, 1484–1488. doi: 10.1109/CDC.1995.480312.

[5]

J. G. Dai and W. Q. Lin, Maximum pressure policies in stochastic processing networks, Operations Research, 53 (2005), 197-218. doi: 10.1287/opre.1040.0170.

[6]

E. J. Davison and U. Ozguner, Decentralized control of traffic networks, IEEE Transactions on Systems, Man, and Cybernetics, 13 (1983), 476-487. doi: 10.1109/TAC.1983.1103296.

[7]

M. Egerstedt and Y. Wardi, Multi-process control using queuing theory, in Proceedings of the 41st IEEE Conference on Decision and Control, 2002, 1991–1996. doi: 10.1109/CDC.2002.1184820.

[8]

P. Giaccone, E. Leonardi and D. Shah, On the maximal throughput of networks with finite buffers and its application to buffered crossbars, in Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies, 2005,971–980. doi: 10.1109/INFCOM.2005.1498326.

[9]

P. B. Hunt, D. I. Robertson, R. D. Bretherton and R. I. Winton, SCOOT - a Traffic Responsive Method of Coordinating Signals, Transport and Road Research Laboratory, UK, 1981.

[10]

H. Ishii and B. A. Francis, Stabilizing a linear system by switching control with dwell time, IEEE Trans. Automat. Control, 47 (2002), 1962-1973. doi: 10.1109/TAC.2002.805689.

[11]

M. J. NeelyE. Modiano and C. E. Rohrs, Dynamic power allocation and routing for time-varying wireless networks, IEEE Journal on Selected Areas in Communications, 23 (2005), 89-103.

[12]

M. Pajic, S. Sundaram and G. J. Pappas, Stabilizability over Deterministic Relay Networks, in Proceedings of the 52nd IEEE Conference on Decision and Control, 2013. doi: 10.1109/CDC.2013.6760504.

[13]

A. G. Sims and K. W. Dobinson, The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits, IEEE Transactions on Vehicular Technology, 29 (1980), 130-137. doi: 10.1109/T-VT.1980.23833.

[14]

A. L. Stolyar, MaxWeight scheduling in a generalized switch: State space collapse and workload minimization in heavy traffic, Annals of Applied Probability, 14 (2004), 1-53. doi: 10.1214/aoap/1075828046.

[15]

L. Tassiulas, Adaptive back-pressure congestion control-based on local information, IEEE Transactions on Automatic Control, 40 (1995), 236-250. doi: 10.1109/9.341781.

[16]

L. Tassiulas and A. Ephremides, Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks, IEEE Transactions on Automatic Control, 37 (1992), 1936-1948. doi: 10.1109/9.182479.

[17]

M. van den Berg, A. Hegyi, B. De Schutter and H. Hellendoorn, A macroscopic traffic flow model for integrated control of freeway and urban traffic networks, in Proceedings of the 42nd IEEE Conference on Decision and Control, 2003, 2774–2779.

[18]

P. Varaiya, Max pressure control of a network of signalized intersections, Transportation Research Part C: Emerging Technologies, 36 (2013), 177-195. doi: 10.1016/j.trc.2013.08.014.

[19]

T. Wongpiromsarn, T. Uthaicharoenpong, Y. Wang, E. Frazzoli and D. Wang, Distributed traffic signal control for maximum network throughput, in Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems, 2012,588–595. doi: 10.1109/ITSC.2012.6338817.

[20]

H. M. ZhangY. M. Nie and Z. S. Qian, Modelling network flow with and without link interactions: The cases of point queue, spatial queue and cell transmission model, Transportmetrica B: Transport Dynamics, 1 (2013), 33-51.

Figure 1.  The chosen network was calibrated to represent realistic demands and physical parameters observed on a stretch of Black Mountain Road near the I-15 freeway in San Diego, California
Figure 2.  Cb-MP demonstrated service rates that are consistent with a fully-actuated control system for similar cycle lengths
Figure 3.  Cb-MP outperforms the actuated controller given high demand in terms of vehicle delay
Figure 4.  While Cb-MP caused more vehicle stop events, stoppage times were similar to those observed using the actuated controller
Figure 5.  Observed queues increase with cycle length using CbMP control
[1]

Yinfei Li, Shuping Chen. Optimal traffic signal control for an $M\times N$ traffic network. Journal of Industrial & Management Optimization, 2008, 4 (4) : 661-672. doi: 10.3934/jimo.2008.4.661

[2]

Bara Kim. Stability of a retrial queueing network with different classes of customers and restricted resource pooling. Journal of Industrial & Management Optimization, 2011, 7 (3) : 753-765. doi: 10.3934/jimo.2011.7.753

[3]

Lixin Xu, Wanquan Liu. A new recurrent neural network adaptive approach for host-gate way rate control protocol within intranets using ATM ABR service. Journal of Industrial & Management Optimization, 2005, 1 (3) : 389-404. doi: 10.3934/jimo.2005.1.389

[4]

Shruti Agarwal, Gilles Carbou, Stéphane Labbé, Christophe Prieur. Control of a network of magnetic ellipsoidal samples. Mathematical Control & Related Fields, 2011, 1 (2) : 129-147. doi: 10.3934/mcrf.2011.1.129

[5]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure & Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655

[6]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[7]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[8]

Jae Man Park, Gang Uk Hwang, Boo Geum Jung. Design and analysis of an adaptive guard channel based CAC scheme in a 3G-WLAN integrated network. Journal of Industrial & Management Optimization, 2010, 6 (3) : 621-639. doi: 10.3934/jimo.2010.6.621

[9]

V. Lanza, D. Ambrosi, L. Preziosi. Exogenous control of vascular network formation in vitro: a mathematical model. Networks & Heterogeneous Media, 2006, 1 (4) : 621-637. doi: 10.3934/nhm.2006.1.621

[10]

Arti Mishra, Benjamin Ambrosio, Sunita Gakkhar, M. A. Aziz-Alaoui. A network model for control of dengue epidemic using sterile insect technique. Mathematical Biosciences & Engineering, 2018, 15 (2) : 441-460. doi: 10.3934/mbe.2018020

[11]

Yacine Chitour, Frédéric Grognard, Georges Bastin. Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks & Heterogeneous Media, 2006, 1 (1) : 219-239. doi: 10.3934/nhm.2006.1.219

[12]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[13]

Abdallah Ben Abdallah, Farhat Shel. Exponential stability of a general network of 1-d thermoelastic rods. Mathematical Control & Related Fields, 2012, 2 (1) : 1-16. doi: 10.3934/mcrf.2012.2.1

[14]

Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251

[15]

Konstantin Avrachenkov, Giovanni Neglia, Vikas Vikram Singh. Network formation games with teams. Journal of Dynamics & Games, 2016, 3 (4) : 303-318. doi: 10.3934/jdg.2016016

[16]

Joanna Tyrcha, John Hertz. Network inference with hidden units. Mathematical Biosciences & Engineering, 2014, 11 (1) : 149-165. doi: 10.3934/mbe.2014.11.149

[17]

T. S. Evans, A. D. K. Plato. Network rewiring models. Networks & Heterogeneous Media, 2008, 3 (2) : 221-238. doi: 10.3934/nhm.2008.3.221

[18]

David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161.

[19]

Pradeep Dubey, Rahul Garg, Bernard De Meyer. Competing for customers in a social network. Journal of Dynamics & Games, 2014, 1 (3) : 377-409. doi: 10.3934/jdg.2014.1.377

[20]

Jose-Luis Roca-Gonzalez. Designing dynamical systems for security and defence network knowledge management. A case of study: Airport bird control falconers organizations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1311-1329. doi: 10.3934/dcdss.2015.8.1311

2017 Impact Factor: 1.187

Article outline

Figures and Tables

[Back to Top]