March 2018, 13(1): 47-67. doi: 10.3934/nhm.2018003

Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Universitá degli Studi di L'Aquila, Via Vetoio, I-67100 Coppito (L'Aquila), Italy

Received  November 2016 Revised  October 2017 Published  March 2018

This paper approaches the question of existence and uniqueness of stationary solutions to a semilinear hyperbolic-parabolic system and the study of the asymptotic behaviour of global solutions. The system is a model for some biological phenomena evolving on a network composed by a finite number of nodes and oriented arcs. The transmission conditions for the unknowns, set at each inner node, are crucial features of the model.

Citation: Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks & Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003
References:
[1]

W. Alt and J. M. Greemberg, Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Trans. Amer. Math. Soc., 300 (1987), 235-258. doi: 10.1090/S0002-9947-1987-0871674-4.

[2]

R. BorscheS. GottlichA. Klar and P. Schillen, The scalar Keller-Segel model on networks, Math. Models Methods Appl. Sci., 24 (2014), 221-247. doi: 10.1142/S0218202513400071.

[3]

G. BrettiR. Natalini and M. Ribot, A hyperbolic model of chemotaxis on a network: A numerical study, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 231-258. doi: 10.1051/m2an/2013098.

[4]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Clarendon Press-Oxford, 1998.

[5]

G. M. CocliteM. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683.

[6]

L. Corrias and F. Camilli, Parabolic models for chemotaxis on weighted nerworks, J. Math. Pures Appl., 108 (2017), 459-480. doi: 10.1016/j.matpur.2017.07.003.

[7]

R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures, Vol. 50 of Mathematiques & Applications [Mathematics & Applications] Springer-Verlag, Berlin, 2006.

[8]

Y. Dolak and T. Hillen, Cattaneo models for chemosensitive movement. Numerical solution and pattern formation, J. Math. Biol., 46 (2003), 153-170. doi: 10.1007/s00285-002-0173-7.

[9]

F. FilbetP. Laurencot and B. Pertame, Derivation of hyperbolic model for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207. doi: 10.1007/s00285-004-0286-2.

[10]

M. Garavello and B. Piccoli, Traffic Flow on Networks -Conservation Laws Models, AIMS Series on Applied Mathematics, Vol. 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.

[11]

F. R. GuarguagliniC. MasciaR. Natalini and M. Ribot, Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 39-76. doi: 10.3934/dcdsb.2009.12.39.

[12]

F. R. Guarguaglini and R. Natalini, Global smooth solutions for a hyperbolic chemotaxis model on a network, SIAM J. Math. Anal., 47 (2015), 4652-4671. doi: 10.1137/140997099.

[13]

B. A. C. HarleyH. KimM. H. ZamanI. V. YannasD. A. Lauffenburger and L. J. Gibson, Microarchitecture of three-dimensional scaffold influences cell migration behavior via junction interaction, Biophysical Journal, 29 (2008), 4013-4024.

[14]

T. Hillen, Hyperbolic models for chemosensitive mevement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034. doi: 10.1142/S0218202502002008.

[15]

T. HillenC. Rhode and F. Lutscher, Existence of weak solutions for a hyperbolic model of chemosensitive movement, J. Math. Anal. Appl., 260 (2001), 173-199. doi: 10.1006/jmaa.2001.7447.

[16]

T. Hillen and A. Stevens, Hyperbolic model for chemotaxis in 1-D, Nonlinear Anal. Real World Appl., 1 (2000), 409-433. doi: 10.1016/S0362-546X(99)00284-9.

[17]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I.Jahresber.Deutsch Math-Verein, 105 (2003), 103-165.

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.

[19]

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Mathematische Zeitschrift, 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3.

[20]

B. B. Mandal and S. C. Kundu, Cell proliferation and migration in silk broin 3D scaffolds, Biomaterials, 30 (2009), 2956-2965.

[21]

D. Mugnolo, Simigroup Methods for Evolutions Equations on Networks, Springer, Berlin, 2014.

[22]

J. D. Murray, Mathematical Biology. I An Introduction, Third edition. Interdisciplinary Applied Mathematics, 17 Springer Verlag, New York, 2002; Mathematical Biology. Ⅱ Spatial models and biomedical applications, Third edition. Interdisciplinary Applied Mathematics, 18 Springer Verlag, New York, 2003.

[23]

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhauser, 2007.

[24]

L. A. Segel, A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM J.Appl.Math., 32 (1977), 653-665.

[25]

C. SpadaccioA. RainerS. De PorcellinisM. CentolaF. De MarcoM. ChelloM. Trombetta and J. A. Genovese, A G-CSF functionalized PLLA scaffold for wound repair: An in vitro preliminary study, Conf. Proc. IEEE Eng.Med.Biol.Soc., (2010), 843-846.

[26]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797. doi: 10.1137/080733590.

show all references

References:
[1]

W. Alt and J. M. Greemberg, Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Trans. Amer. Math. Soc., 300 (1987), 235-258. doi: 10.1090/S0002-9947-1987-0871674-4.

[2]

R. BorscheS. GottlichA. Klar and P. Schillen, The scalar Keller-Segel model on networks, Math. Models Methods Appl. Sci., 24 (2014), 221-247. doi: 10.1142/S0218202513400071.

[3]

G. BrettiR. Natalini and M. Ribot, A hyperbolic model of chemotaxis on a network: A numerical study, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 231-258. doi: 10.1051/m2an/2013098.

[4]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Clarendon Press-Oxford, 1998.

[5]

G. M. CocliteM. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683.

[6]

L. Corrias and F. Camilli, Parabolic models for chemotaxis on weighted nerworks, J. Math. Pures Appl., 108 (2017), 459-480. doi: 10.1016/j.matpur.2017.07.003.

[7]

R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures, Vol. 50 of Mathematiques & Applications [Mathematics & Applications] Springer-Verlag, Berlin, 2006.

[8]

Y. Dolak and T. Hillen, Cattaneo models for chemosensitive movement. Numerical solution and pattern formation, J. Math. Biol., 46 (2003), 153-170. doi: 10.1007/s00285-002-0173-7.

[9]

F. FilbetP. Laurencot and B. Pertame, Derivation of hyperbolic model for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207. doi: 10.1007/s00285-004-0286-2.

[10]

M. Garavello and B. Piccoli, Traffic Flow on Networks -Conservation Laws Models, AIMS Series on Applied Mathematics, Vol. 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.

[11]

F. R. GuarguagliniC. MasciaR. Natalini and M. Ribot, Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 39-76. doi: 10.3934/dcdsb.2009.12.39.

[12]

F. R. Guarguaglini and R. Natalini, Global smooth solutions for a hyperbolic chemotaxis model on a network, SIAM J. Math. Anal., 47 (2015), 4652-4671. doi: 10.1137/140997099.

[13]

B. A. C. HarleyH. KimM. H. ZamanI. V. YannasD. A. Lauffenburger and L. J. Gibson, Microarchitecture of three-dimensional scaffold influences cell migration behavior via junction interaction, Biophysical Journal, 29 (2008), 4013-4024.

[14]

T. Hillen, Hyperbolic models for chemosensitive mevement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034. doi: 10.1142/S0218202502002008.

[15]

T. HillenC. Rhode and F. Lutscher, Existence of weak solutions for a hyperbolic model of chemosensitive movement, J. Math. Anal. Appl., 260 (2001), 173-199. doi: 10.1006/jmaa.2001.7447.

[16]

T. Hillen and A. Stevens, Hyperbolic model for chemotaxis in 1-D, Nonlinear Anal. Real World Appl., 1 (2000), 409-433. doi: 10.1016/S0362-546X(99)00284-9.

[17]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I.Jahresber.Deutsch Math-Verein, 105 (2003), 103-165.

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.

[19]

M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Mathematische Zeitschrift, 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3.

[20]

B. B. Mandal and S. C. Kundu, Cell proliferation and migration in silk broin 3D scaffolds, Biomaterials, 30 (2009), 2956-2965.

[21]

D. Mugnolo, Simigroup Methods for Evolutions Equations on Networks, Springer, Berlin, 2014.

[22]

J. D. Murray, Mathematical Biology. I An Introduction, Third edition. Interdisciplinary Applied Mathematics, 17 Springer Verlag, New York, 2002; Mathematical Biology. Ⅱ Spatial models and biomedical applications, Third edition. Interdisciplinary Applied Mathematics, 18 Springer Verlag, New York, 2003.

[23]

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhauser, 2007.

[24]

L. A. Segel, A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM J.Appl.Math., 32 (1977), 653-665.

[25]

C. SpadaccioA. RainerS. De PorcellinisM. CentolaF. De MarcoM. ChelloM. Trombetta and J. A. Genovese, A G-CSF functionalized PLLA scaffold for wound repair: An in vitro preliminary study, Conf. Proc. IEEE Eng.Med.Biol.Soc., (2010), 843-846.

[26]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797. doi: 10.1137/080733590.

Figure 1.  Example of acyclic network; the highlighted arcs form the path linking the nodes $N_4$ and $N_5$.
Figure 2.  Example: the highlighted arcs form the path from the outer point $e_1$ to the inner node $N_4$ and $I_5$ is an arc incident with $N_4$, not belonghing to the path.
[1]

Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2017199

[2]

Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations & Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1

[3]

Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733

[4]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[5]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[6]

Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic & Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031

[7]

Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206

[8]

Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935

[9]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[10]

Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590

[11]

Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267

[12]

Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793

[13]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[14]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[15]

Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927

[16]

Maciej Smołka. Asymptotic behaviour of optimal solutions of control problems governed by inclusions. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 641-652. doi: 10.3934/dcds.1998.4.641

[17]

M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827

[18]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[19]

Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739

[20]

Riccardo Molle, Donato Passaseo. On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 445-454. doi: 10.3934/dcds.1998.4.445

2016 Impact Factor: 1.2

Article outline

Figures and Tables

[Back to Top]