2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65

Numerical network models and entropy principles for isothermal junction flow

1. 

Dept. of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway

Received  September 2013 Revised  November 2013 Published  April 2014

We numerically explore network models which are derived for the isothermal Euler equations. Previously we proved the existence and uniqueness of solutions to the generalized Riemann problem at a junction under the conditions of monotone momentum related coupling constant and equal cross-sectional areas for all connected pipe sections. In the present paper we extend this proof to the case of pipe sections of different cross-sectional areas.
    We describe a numerical implementation of the network models, where the flow in each pipe section is calculated using a classical high-resolution Roe scheme. We propose a numerical treatment of the boundary conditions at the pipe-junction interface, consistent with the coupling conditions. In particular, mass is exactly conserved across the junction.
    Numerical results are provided for two different network configurations and for three different network models. Mechanical energy considerations are applied in order to evaluate the results in terms of physical soundness. Analytical predictions for junctions connecting three pipe sections are verified for both network configurations. Long term behaviour of physical and unphysical solutions are presented and compared, and the impact of having pipes with different cross-sectional area is shown.
Citation: Gunhild A. Reigstad. Numerical network models and entropy principles for isothermal junction flow. Networks & Heterogeneous Media, 2014, 9 (1) : 65-95. doi: 10.3934/nhm.2014.9.65
References:
[1]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. doi: 10.3934/nhm.2006.1.41.

[2]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295. doi: 10.3934/nhm.2006.1.295.

[3]

M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Toward a mathematical analysis for drift-flux multiphase flow models in networks,, SIAM J. Sci. Comput., 31 (2010), 4633. doi: 10.1137/080722138.

[4]

M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Coupling drift-flux models with unequal sonic speeds,, Math. Comput. Appl., 15 (2010), 574.

[5]

J. Brouwer, I. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks,, Multiscale Model. Simul., 9 (2011), 601. doi: 10.1137/100813580.

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683.

[7]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction,, Netw. Heterog. Media, 1 (2006), 495. doi: 10.3934/nhm.2006.1.495.

[8]

R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction,, SIAM J. Math. Anal., 39 (2008), 1456. doi: 10.1137/060665841.

[9]

R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605. doi: 10.1137/070690298.

[10]

R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction,, J. Hyperbol. Differ. Eq., 5 (2008), 547. doi: 10.1142/S0219891608001593.

[11]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, 3rd edition, (2010). doi: 10.1007/978-3-642-04048-1.

[12]

M. Garavello, A review of conservation laws on networks,, Netw. Heterog. Media, 5 (2010), 565. doi: 10.3934/nhm.2010.5.565.

[13]

M. Herty, Coupling conditions for networked systems of Euler equations,, SIAM J. Sci. Comput., 30 (2008), 1596. doi: 10.1137/070688535.

[14]

M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections,, Netw. Heterog. Media, 56 (2008), 485. doi: 10.1002/fld.1531.

[15]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999. doi: 10.1137/S0036141093243289.

[16]

S. W. Hong and C. Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses,, Int. J. Numer. Meth. Fluids, 65 (2011), 707. doi: 10.1002/fld.2212.

[17]

T. Kiuchi, An implicit method for transient gas flows in pipe networks,, Int. J. Heat and Fluid Flow, 15 (1994), 378. doi: 10.1016/0142-727X(94)90051-5.

[18]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, 6th edition, (2007). doi: 10.1017/CBO9780511791253.

[19]

A. Osiadacz, Simulation of transient gas flows in networks,, Int. J. Numer. Meth. Fluids, 4 (1984), 13. doi: 10.1002/fld.1650040103.

[20]

R. J. Pearson, M. D. Bassett, P. Batten and D. E. Winterbone, Two-dimensional simulation of wave propagation in a three-pipe junction,, J. Eng. Gas Turbines Power, 122 (2000), 549. doi: 10.1115/1.1290589.

[21]

J. Pérez-García, E. Sanmiguel-Rojas, J. Hernández-Grau and A. Viedma, Numerical and experimental investigations on internal compressible flow at T-type junctions,, Experimental Thermal and Fluid Science, 31 (2006), 61.

[22]

G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow,, Submitted, (2013).

[23]

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes,, Journal of Computational Physics, 43 (1981), 357. doi: 10.1016/0021-9991(81)90128-5.

[24]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,, 3rd edition, (2009). doi: 10.1007/b79761.

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. doi: 10.3934/nhm.2006.1.41.

[2]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295. doi: 10.3934/nhm.2006.1.295.

[3]

M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Toward a mathematical analysis for drift-flux multiphase flow models in networks,, SIAM J. Sci. Comput., 31 (2010), 4633. doi: 10.1137/080722138.

[4]

M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Coupling drift-flux models with unequal sonic speeds,, Math. Comput. Appl., 15 (2010), 574.

[5]

J. Brouwer, I. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks,, Multiscale Model. Simul., 9 (2011), 601. doi: 10.1137/100813580.

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683.

[7]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction,, Netw. Heterog. Media, 1 (2006), 495. doi: 10.3934/nhm.2006.1.495.

[8]

R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction,, SIAM J. Math. Anal., 39 (2008), 1456. doi: 10.1137/060665841.

[9]

R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605. doi: 10.1137/070690298.

[10]

R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction,, J. Hyperbol. Differ. Eq., 5 (2008), 547. doi: 10.1142/S0219891608001593.

[11]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, 3rd edition, (2010). doi: 10.1007/978-3-642-04048-1.

[12]

M. Garavello, A review of conservation laws on networks,, Netw. Heterog. Media, 5 (2010), 565. doi: 10.3934/nhm.2010.5.565.

[13]

M. Herty, Coupling conditions for networked systems of Euler equations,, SIAM J. Sci. Comput., 30 (2008), 1596. doi: 10.1137/070688535.

[14]

M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections,, Netw. Heterog. Media, 56 (2008), 485. doi: 10.1002/fld.1531.

[15]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999. doi: 10.1137/S0036141093243289.

[16]

S. W. Hong and C. Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses,, Int. J. Numer. Meth. Fluids, 65 (2011), 707. doi: 10.1002/fld.2212.

[17]

T. Kiuchi, An implicit method for transient gas flows in pipe networks,, Int. J. Heat and Fluid Flow, 15 (1994), 378. doi: 10.1016/0142-727X(94)90051-5.

[18]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, 6th edition, (2007). doi: 10.1017/CBO9780511791253.

[19]

A. Osiadacz, Simulation of transient gas flows in networks,, Int. J. Numer. Meth. Fluids, 4 (1984), 13. doi: 10.1002/fld.1650040103.

[20]

R. J. Pearson, M. D. Bassett, P. Batten and D. E. Winterbone, Two-dimensional simulation of wave propagation in a three-pipe junction,, J. Eng. Gas Turbines Power, 122 (2000), 549. doi: 10.1115/1.1290589.

[21]

J. Pérez-García, E. Sanmiguel-Rojas, J. Hernández-Grau and A. Viedma, Numerical and experimental investigations on internal compressible flow at T-type junctions,, Experimental Thermal and Fluid Science, 31 (2006), 61.

[22]

G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow,, Submitted, (2013).

[23]

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes,, Journal of Computational Physics, 43 (1981), 357. doi: 10.1016/0021-9991(81)90128-5.

[24]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,, 3rd edition, (2009). doi: 10.1007/b79761.

[1]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[2]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[3]

Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733

[4]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

[5]

Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448

[6]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic & Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[7]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

[8]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

[9]

Yulan Xu, Yanping Dou. Large BV solutions to Euler equations in the isothermal self-gravitating gases with damping. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1451-1467. doi: 10.3934/cpaa.2009.8.1451

[10]

Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks. Networks & Heterogeneous Media, 2015, 10 (2) : 295-320. doi: 10.3934/nhm.2015.10.295

[11]

Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041

[12]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

[13]

Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks & Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733

[14]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[15]

Jens Lang, Pascal Mindt. Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks & Heterogeneous Media, 2018, 13 (1) : 177-190. doi: 10.3934/nhm.2018008

[16]

Michael Herty. Modeling, simulation and optimization of gas networks with compressors. Networks & Heterogeneous Media, 2007, 2 (1) : 81-97. doi: 10.3934/nhm.2007.2.81

[17]

Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307

[18]

Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035

[19]

W. G. Litvinov, R. H.W. Hoppe. Coupled problems on stationary non-isothermal flow of electrorheological fluids. Communications on Pure & Applied Analysis, 2005, 4 (4) : 779-803. doi: 10.3934/cpaa.2005.4.779

[20]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]