2012, 7(4): 583-603. doi: 10.3934/nhm.2012.7.583

Spreading speed revisited: Analysis of a free boundary model

1. 

School of Science and Technology, University of New England, Armidale, NSW 2351, Australia, Australia, Australia

Received  January 2012 Revised  July 2012 Published  December 2012

We investigate, from a more ecological point of view, a free boundary model considered in [11] and [8] that describes the spreading of a new or invasive species, with the free boundary representing the spreading front. We derive the free boundary condition by considering a "population loss" at the spreading front, and correct some mistakes regarding the range of spreading speed in [11]. Then we use numerical simulation to gain further insights to the model, which may help to determine its usefulness in concrete ecological situations.
Citation: Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5.

[3]

H. Berestycki, F. Hamel and H. Matano, Bistable traveling waves around an obstacle,, Comm. Pure Appl. Math., 62 (2009), 729. doi: 10.1002/cpa.20275.

[4]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Funct. Anal., 255 (2008), 2146. doi: 10.1016/j.jfa.2008.06.030.

[5]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. I. Periodic framework,, J. Eur. Math. Soc., 7 (2005), 173. doi: 10.4171/JEMS/26.

[6]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778. doi: 10.1137/S0036141099351693.

[7]

Y. Du, "Order Structure and Topological Methods in Nonlinear Partial Differential Equations,", 1, 1 (2006). doi: 10.1142/9789812774446.

[8]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, II,, J. Diff. Eqns., 250 (2011), 4336. doi: 10.1016/j.jde.2011.02.011.

[9]

Y. Du and Z. M. Guo, The Stefan problem for the Fisher-KPP equation,, J. Diff. Eqns., 253 (2012), 996. doi: 10.1016/j.jde.2012.04.014.

[10]

Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment,, preprint, (2011).

[11]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 1305. doi: 10.1137/090771089.

[12]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, preprint, (2011).

[13]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems,, J. European Math. Soc., 12 (2010), 279. doi: 10.4171/JEMS/198.

[14]

X. Fauvergue, J-C. Malausa, L. Giuge and F. Courchamp, Invading parasitoids suffer no Allee effect: A manipulative field experiment,, Ecology, 88 (2008), 2392.

[15]

I. Filin, R. D. Holt and M. Barfield, The relation of density regulation to habitat specialization, evolution of a speciesrange, and the dynamics of biological invasions,, Am. Nat., 172 (2008), 233.

[16]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.

[17]

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.

[18]

D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem,, Japan J. Indust. Appl. Math., 18 (2001), 161. doi: 10.1007/BF03168569.

[19]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Ètude de l'équation de la diffusion avec croissance de la quantitéde matière et son application à un problème biologique,, Bull. Univ. Moscou Sér. Internat. A1 (1937), A1 (1937), 1.

[20]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Popul. Ecol., 51 (2009), 341.

[21]

M. A. Lewis and P. Kareiva, Allee dynamics and the spreading of invasive organisms,, Theor. Population Bio., 43 (1993), 141.

[22]

X. Liang and X-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154.

[23]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883. doi: 10.1088/0951-7715/20/8/004.

[24]

J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology,", Blackwell Publishing, (2007).

[25]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151. doi: 10.1007/BF03167042.

[26]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession,, Discrete Cont. Dyn. Syst. A., ().

[27]

L. I. Rubinstein, "The Stefan Problem,", Amer. Math. Soc., (1971).

[28]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997).

[29]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.

[30]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511. doi: 10.1007/s00285-002-0169-3.

[31]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207. doi: 10.1007/s00285-007-0078-6.

[32]

J. X. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161. doi: 10.1137/S0036144599364296.

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5.

[3]

H. Berestycki, F. Hamel and H. Matano, Bistable traveling waves around an obstacle,, Comm. Pure Appl. Math., 62 (2009), 729. doi: 10.1002/cpa.20275.

[4]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Funct. Anal., 255 (2008), 2146. doi: 10.1016/j.jfa.2008.06.030.

[5]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. I. Periodic framework,, J. Eur. Math. Soc., 7 (2005), 173. doi: 10.4171/JEMS/26.

[6]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778. doi: 10.1137/S0036141099351693.

[7]

Y. Du, "Order Structure and Topological Methods in Nonlinear Partial Differential Equations,", 1, 1 (2006). doi: 10.1142/9789812774446.

[8]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, II,, J. Diff. Eqns., 250 (2011), 4336. doi: 10.1016/j.jde.2011.02.011.

[9]

Y. Du and Z. M. Guo, The Stefan problem for the Fisher-KPP equation,, J. Diff. Eqns., 253 (2012), 996. doi: 10.1016/j.jde.2012.04.014.

[10]

Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment,, preprint, (2011).

[11]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 1305. doi: 10.1137/090771089.

[12]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, preprint, (2011).

[13]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems,, J. European Math. Soc., 12 (2010), 279. doi: 10.4171/JEMS/198.

[14]

X. Fauvergue, J-C. Malausa, L. Giuge and F. Courchamp, Invading parasitoids suffer no Allee effect: A manipulative field experiment,, Ecology, 88 (2008), 2392.

[15]

I. Filin, R. D. Holt and M. Barfield, The relation of density regulation to habitat specialization, evolution of a speciesrange, and the dynamics of biological invasions,, Am. Nat., 172 (2008), 233.

[16]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.

[17]

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, J. Math. Biol., 2 (1975), 251.

[18]

D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase Stefan problem,, Japan J. Indust. Appl. Math., 18 (2001), 161. doi: 10.1007/BF03168569.

[19]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Ètude de l'équation de la diffusion avec croissance de la quantitéde matière et son application à un problème biologique,, Bull. Univ. Moscou Sér. Internat. A1 (1937), A1 (1937), 1.

[20]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Popul. Ecol., 51 (2009), 341.

[21]

M. A. Lewis and P. Kareiva, Allee dynamics and the spreading of invasive organisms,, Theor. Population Bio., 43 (1993), 141.

[22]

X. Liang and X-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154.

[23]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883. doi: 10.1088/0951-7715/20/8/004.

[24]

J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, "Invasion Ecology,", Blackwell Publishing, (2007).

[25]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151. doi: 10.1007/BF03167042.

[26]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession,, Discrete Cont. Dyn. Syst. A., ().

[27]

L. I. Rubinstein, "The Stefan Problem,", Amer. Math. Soc., (1971).

[28]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997).

[29]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.

[30]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511. doi: 10.1007/s00285-002-0169-3.

[31]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207. doi: 10.1007/s00285-007-0078-6.

[32]

J. X. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161. doi: 10.1137/S0036144599364296.

[1]

Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317

[2]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[3]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[4]

Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837

[5]

Rui Peng, Xiao-Qiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2007-2031. doi: 10.3934/dcds.2013.33.2007

[6]

Peixuan Weng. Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 883-904. doi: 10.3934/dcdsb.2009.12.883

[7]

Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

[8]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[9]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[10]

Qiaoling Chen, Fengquan Li, Feng Wang. A diffusive logistic problem with a free boundary in time-periodic environment: Favorable habitat or unfavorable habitat. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 13-35. doi: 10.3934/dcdsb.2016.21.13

[11]

Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268

[12]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

[13]

Mei Li, Zhigui Lin. The spreading fronts in a mutualistic model with advection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2089-2105. doi: 10.3934/dcdsb.2015.20.2089

[14]

Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713

[15]

Yihong Du, Zhigui Lin. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3105-3132. doi: 10.3934/dcdsb.2014.19.3105

[16]

Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255

[17]

Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175

[18]

F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49

[19]

Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann. Evacuation dynamics influenced by spreading hazardous material. Networks & Heterogeneous Media, 2011, 6 (3) : 443-464. doi: 10.3934/nhm.2011.6.443

[20]

Shuping Li, Zhen Jin. Impacts of cluster on network topology structure and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3749-3770. doi: 10.3934/dcdsb.2017187

2016 Impact Factor: 1.2

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (56)

Other articles
by authors

[Back to Top]