2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243

Explicit solutions of some linear-quadratic mean field games

1. 

Dipartimento di Matematica, Università di Padova, via Trieste, 63; I-35121 Padova, Italy

Received  November 2011 Revised  March 2012 Published  June 2012

We consider $N$-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Planck equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number $N$ of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [22]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.
Citation: Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243
References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77. doi: 10.1137/100790069.

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136. doi: 10.1137/090758477.

[3]

O. Alvarez and M. Bardi, Ergodic problems in differential games, in, Advances in Dynamic Game Theory, 9 (2007), 131.

[4]

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations,, Mem. Amer. Math. Soc., 204 (2010).

[5]

R. J. Aumann, Markets with a continuum of traders,, Econometrica, 32 (1964), 39. doi: 10.2307/1913732.

[6]

M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", With appendices by Maurizio Falcone and Pierpaolo Soravia, (1997).

[7]

T. Başar and G. J. Olsder, "Dynamic Noncooperative Game Theory,", Second edition, (1995).

[8]

A. Bensoussan and J. Frehse, "Regularity Results for Nonlinear Elliptic Systems and Applications,", Applied Mathematical Sciences, 151 (2002).

[9]

P. Cardaliaguet, "Notes on Mean Field Games,", from P.-L. Lions' lectures at Collège de France, (2010).

[10]

J. C. Engwerda, "Linear Quadratic Dynamic Optimization and Differential Games,", Wiley, (2005).

[11]

W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,", 2nd edition, 25 (2006).

[12]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.

[13]

O. Guéant, "Mean Field Games and Applications to Economics,", Ph.D. Thesis, (2009).

[14]

O. Guéant, A reference case for mean field games models,, J. Math. Pures Appl. (9), 92 (2009), 276.

[15]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications,, in, 2003 (2011), 205.

[16]

R. Z. Has'minskiĭ, "Stochastic Stability of Differential Equations,", Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7 (1980).

[17]

M. Huang, P. E. Caines and R. P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and Nash equilibrium solutions,, in, (2003), 98.

[18]

M. Huang, P. E. Caines and R. P. Malhamé, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,, Commun. Inf. Syst., 6 (2006), 221.

[19]

M. Huang, P. E. Caines and R. P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria,, IEEE Trans. Automat. Control, 52 (2007), 1560. doi: 10.1109/TAC.2007.904450.

[20]

M. Huang, P. E. Caines and R. P. Malhamé, An invariance principle in large population stochastic dynamic games,, J. Syst. Sci. Complex., 20 (2007), 162. doi: 10.1007/s11424-007-9015-4.

[21]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Math. Models Methods Appl. Sci., 20 (2010), 567. doi: 10.1142/S0218202510004349.

[22]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Acad. Sci. Paris, 343 (2006), 619. doi: 10.1016/j.crma.2006.09.019.

[23]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Acad. Sci. Paris, 343 (2006), 679. doi: 10.1016/j.crma.2006.09.018.

[24]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.

show all references

References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77. doi: 10.1137/100790069.

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136. doi: 10.1137/090758477.

[3]

O. Alvarez and M. Bardi, Ergodic problems in differential games, in, Advances in Dynamic Game Theory, 9 (2007), 131.

[4]

O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations,, Mem. Amer. Math. Soc., 204 (2010).

[5]

R. J. Aumann, Markets with a continuum of traders,, Econometrica, 32 (1964), 39. doi: 10.2307/1913732.

[6]

M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", With appendices by Maurizio Falcone and Pierpaolo Soravia, (1997).

[7]

T. Başar and G. J. Olsder, "Dynamic Noncooperative Game Theory,", Second edition, (1995).

[8]

A. Bensoussan and J. Frehse, "Regularity Results for Nonlinear Elliptic Systems and Applications,", Applied Mathematical Sciences, 151 (2002).

[9]

P. Cardaliaguet, "Notes on Mean Field Games,", from P.-L. Lions' lectures at Collège de France, (2010).

[10]

J. C. Engwerda, "Linear Quadratic Dynamic Optimization and Differential Games,", Wiley, (2005).

[11]

W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,", 2nd edition, 25 (2006).

[12]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.

[13]

O. Guéant, "Mean Field Games and Applications to Economics,", Ph.D. Thesis, (2009).

[14]

O. Guéant, A reference case for mean field games models,, J. Math. Pures Appl. (9), 92 (2009), 276.

[15]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications,, in, 2003 (2011), 205.

[16]

R. Z. Has'minskiĭ, "Stochastic Stability of Differential Equations,", Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7 (1980).

[17]

M. Huang, P. E. Caines and R. P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and Nash equilibrium solutions,, in, (2003), 98.

[18]

M. Huang, P. E. Caines and R. P. Malhamé, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,, Commun. Inf. Syst., 6 (2006), 221.

[19]

M. Huang, P. E. Caines and R. P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria,, IEEE Trans. Automat. Control, 52 (2007), 1560. doi: 10.1109/TAC.2007.904450.

[20]

M. Huang, P. E. Caines and R. P. Malhamé, An invariance principle in large population stochastic dynamic games,, J. Syst. Sci. Complex., 20 (2007), 162. doi: 10.1007/s11424-007-9015-4.

[21]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Math. Models Methods Appl. Sci., 20 (2010), 567. doi: 10.1142/S0218202510004349.

[22]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Acad. Sci. Paris, 343 (2006), 619. doi: 10.1016/j.crma.2006.09.019.

[23]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Acad. Sci. Paris, 343 (2006), 679. doi: 10.1016/j.crma.2006.09.018.

[24]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.

[1]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[2]

Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435

[3]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

[4]

Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks & Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315

[5]

Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial & Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95

[6]

Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations & Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028

[7]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[8]

Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95

[9]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[10]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A model problem for Mean Field Games on networks. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4173-4192. doi: 10.3934/dcds.2015.35.4173

[11]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[12]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

[13]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[14]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[15]

Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547

[16]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[17]

Jingzhen Liu, Ka-Fai Cedric Yiu. Optimal stochastic differential games with VaR constraints. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1889-1907. doi: 10.3934/dcdsb.2013.18.1889

[18]

Alain Bensoussan, Jens Frehse, Christine Grün. Stochastic differential games with a varying number of players. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1719-1736. doi: 10.3934/cpaa.2014.13.1719

[19]

Yves Achdou, Victor Perez. Iterative strategies for solving linearized discrete mean field games systems. Networks & Heterogeneous Media, 2012, 7 (2) : 197-217. doi: 10.3934/nhm.2012.7.197

[20]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (38)

Other articles
by authors

[Back to Top]