2011, 6(2): 329-349. doi: 10.3934/nhm.2011.6.329

Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays

1. 

Center for Computational Systems Biology, Laboratory of Mathematics for Nonlinear Sciences, School of Mathematical Sciences, Fudan University, Shanghai, 200433

2. 

Max Planck Institute for Mathematics in theSciences, Inselstr. 22, 04103 Leipzig, Germany

Received  August 2010 Revised  February 2011 Published  May 2011

We analyze stability of consensus algorithms in networks of multi-agents with time-varying topologies and delays. The topology and delays are modeled as induced by an adapted process and are rather general, including i.i.d. topology processes, asynchronous consensus algorithms, and Markovian jumping switching. In case the self-links are instantaneous, we prove that the network reaches consensus for all bounded delays if the graph corresponding to the conditional expectation of the coupling matrix sum across a finite time interval has a spanning tree almost surely. Moreover, when self-links are also delayed and when the delays satisfy certain integer patterns, we observe and prove that the algorithm may not reach consensus but instead synchronize at a periodic trajectory, whose period depends on the delay pattern. We also give a brief discussion on the dynamics in the absence of self-links.
Citation: Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks & Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329
References:
[1]

P.-A. Bliman and G. Ferrari-Trecate, Average consensus problems in networks of agents with delayed communications,, Automatica, 44 (2008), 1985. doi: 10.1016/j.automatica.2007.12.010.

[2]

M. Cao, A. S. Morse and B. D. O. Anderson, Reaching a consensus in a dynamically changing environment: A graphical approach,, SIAM J. Control Optim., 47 (2008), 575. doi: 10.1137/060657005.

[3]

S. Chatterjee and E. Seneta, Towards consensus: Some convergence theorems on repeated averaging,, J. Appl. Prob., 14 (1977), 89. doi: 10.2307/3213262.

[4]

O. Chilina, "f-Uniform Ergodicity of Markov Chains,'', Supervised Project, (2006).

[5]

M. H. DeGroot, Reaching a consensus,, J. Amer. Statist. Assoc., 69 (1974), 118. doi: 10.2307/2285509.

[6]

D. V. Dimarogonasa and K. H. Johansson, Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control,, Automatica, 46 (2010), 695. doi: 10.1016/j.automatica.2010.01.012.

[7]

R. Durrett, "Probability: Theory and Examples," 3rd edition,, Belmont, (2005).

[8]

F. Fagnani and S. Zampieri, Average consensus with packet drop communication,, SIAM J. Control Optim., 48 (2009), 102. doi: 10.1137/060676866.

[9]

L. Fang, P. J. Antsaklis and A. Tzimas, Asynchronous consensus protocols: Preliminary results, simulations and open questions,, Proceedings of the 44th IEEE Conf. Decision and Control, (2005), 2194.

[10]

J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations,, IEEE Trans. Autom. Control, 49 (2004), 1465. doi: 10.1109/TAC.2004.834433.

[11]

C. Godsil and G. Royle, "Algebraic Graph Theory,", Springer-Verlag, (2001).

[12]

J. Hajnal, The ergodic properties of non-homogeneous finite Markov chains,, Proc. Camb. Phil. Soc., 52 (1956), 67. doi: 10.1017/S0305004100030991.

[13]

J. Hajnal, Weak ergodicity in non-homogeneous Markov chains,, Proc. Camb. Phil. Soc., 54 (1958), 233. doi: 10.1017/S0305004100033399.

[14]

Y. Hatano and M. Mesbahi, Agreement over random networks,, IEEE Trans. Autom. Control, 50 (2005), 1867. doi: 10.1109/TAC.2005.858670.

[15]

R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985).

[16]

Y. Kuramoto, "Chemical Oscillations, Waves, And Turbulence,", Springer-Verlag, (1984).

[17]

J. Lin, A. S. Morse and B. D. O. Anderson, The multi-agent rendezvous problem Part 2: The asynchronous case,, SIAM J. Control Optim., 46 (2007), 2120. doi: 10.1137/040620564.

[18]

B. Liu, W. Lu and T. Chen, Consensus in networks of multiagents with switching topologies modeled as adapted stochastic processes,, SIAM J. Control Optim., 49 (2011), 227. doi: 10.1137/090745945.

[19]

W. Lu, F. M. Atay and J. Jost, Synchronization of discrete-time networks with time-varying couplings,, SIAM J. Math. Analys., 39 (2007), 1231. doi: 10.1137/060657935.

[20]

W. Lu, F. M. Atay and J. Jost, Chaos synchronization in networks of coupled maps with time-varying topologies,, Eur. Phys. J. B, 63 (2008), 399. doi: 10.1140/epjb/e2008-00023-3.

[21]

N. A. Lynch, "Distributed Algorithms,", CA: Morgan Kaufmann, (1996).

[22]

W. Ni and D. Z. Cheng, Leader-following consensus of multi-agent systems under fixed and switching topologies,, Systems & Control Letters, 59 (2010), 209. doi: 10.1016/j.sysconle.2010.01.006.

[23]

W. Michiels, C.-I. Morărescu and S.-I. Niculescu, Consensus problems with distributed delays, with application to traffic flow models,, SIAM J. Control Optim., 48 (2009), 77. doi: 10.1137/060671425.

[24]

L. Moreau, Stability of continuous-time distributed consensus algorithms,, 43rd IEEE Conference on Decision and Control, 4 (2004), 3998.

[25]

L. Moreau, Stability of multiagent systems with time-dependent communication links,, IEEE Trans. Autom. Control, 50 (2005), 169. doi: 10.1109/TAC.2004.841888.

[26]

R. Olfati-Saber and J. S. Shamma, Consensus filters for sensor networks and distributed sensor fusion,, 44th IEEE Conference on Decision and Control 2005, (2005), 6698. doi: 10.1109/CDC.2005.1583238.

[27]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Proceedings of the IEEE, 95 (2007), 215. doi: 10.1109/JPROC.2006.887293.

[28]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520. doi: 10.1109/TAC.2004.834113.

[29]

A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,", Cambridge University Press, (2001). doi: 10.1017/CBO9780511755743.

[30]

J. Shen, A geometric approach to ergodic non-homogeneous Markov chains,, Wavelet Anal. Multi. Meth., 212 (2000), 341.

[31]

A. Tahbaz-Salehi and A. Jadbabaie, A necessary and sufficient condition for consensus over random networks,, IEEE Trans. Autom. Control, 53 (2008), 791. doi: 10.1109/TAC.2008.917743.

[32]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226. doi: 10.1103/PhysRevLett.75.1226.

[33]

A. T. Winfree, "The Geometry of Biological Time,", Springer Verlag, (1980).

[34]

J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices,, Proceedings of AMS, 14 (1963), 733.

[35]

C. W. Wu, Synchronization and convergence of linear dynamics in random directed networks,, IEEE Trans. Autom. Control, 51 (2006), 1207.

[36]

F. Xiao and L. Wang, Consensus protocols for discrete-time multi-agent systems with time-varying delays,, Automatica, 44 (2008), 2577.

[37]

F. Xiao and L. Wang, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays,, IEEE Transactions on Automatic Control, 53 (2008), 1804.

[38]

Y. Zhang and Y.-P. Tian, Consentability and protocol design of multi-agent systems with stochastic switching topology,, Automatica, 45 (2009), 1195.

show all references

References:
[1]

P.-A. Bliman and G. Ferrari-Trecate, Average consensus problems in networks of agents with delayed communications,, Automatica, 44 (2008), 1985. doi: 10.1016/j.automatica.2007.12.010.

[2]

M. Cao, A. S. Morse and B. D. O. Anderson, Reaching a consensus in a dynamically changing environment: A graphical approach,, SIAM J. Control Optim., 47 (2008), 575. doi: 10.1137/060657005.

[3]

S. Chatterjee and E. Seneta, Towards consensus: Some convergence theorems on repeated averaging,, J. Appl. Prob., 14 (1977), 89. doi: 10.2307/3213262.

[4]

O. Chilina, "f-Uniform Ergodicity of Markov Chains,'', Supervised Project, (2006).

[5]

M. H. DeGroot, Reaching a consensus,, J. Amer. Statist. Assoc., 69 (1974), 118. doi: 10.2307/2285509.

[6]

D. V. Dimarogonasa and K. H. Johansson, Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control,, Automatica, 46 (2010), 695. doi: 10.1016/j.automatica.2010.01.012.

[7]

R. Durrett, "Probability: Theory and Examples," 3rd edition,, Belmont, (2005).

[8]

F. Fagnani and S. Zampieri, Average consensus with packet drop communication,, SIAM J. Control Optim., 48 (2009), 102. doi: 10.1137/060676866.

[9]

L. Fang, P. J. Antsaklis and A. Tzimas, Asynchronous consensus protocols: Preliminary results, simulations and open questions,, Proceedings of the 44th IEEE Conf. Decision and Control, (2005), 2194.

[10]

J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations,, IEEE Trans. Autom. Control, 49 (2004), 1465. doi: 10.1109/TAC.2004.834433.

[11]

C. Godsil and G. Royle, "Algebraic Graph Theory,", Springer-Verlag, (2001).

[12]

J. Hajnal, The ergodic properties of non-homogeneous finite Markov chains,, Proc. Camb. Phil. Soc., 52 (1956), 67. doi: 10.1017/S0305004100030991.

[13]

J. Hajnal, Weak ergodicity in non-homogeneous Markov chains,, Proc. Camb. Phil. Soc., 54 (1958), 233. doi: 10.1017/S0305004100033399.

[14]

Y. Hatano and M. Mesbahi, Agreement over random networks,, IEEE Trans. Autom. Control, 50 (2005), 1867. doi: 10.1109/TAC.2005.858670.

[15]

R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985).

[16]

Y. Kuramoto, "Chemical Oscillations, Waves, And Turbulence,", Springer-Verlag, (1984).

[17]

J. Lin, A. S. Morse and B. D. O. Anderson, The multi-agent rendezvous problem Part 2: The asynchronous case,, SIAM J. Control Optim., 46 (2007), 2120. doi: 10.1137/040620564.

[18]

B. Liu, W. Lu and T. Chen, Consensus in networks of multiagents with switching topologies modeled as adapted stochastic processes,, SIAM J. Control Optim., 49 (2011), 227. doi: 10.1137/090745945.

[19]

W. Lu, F. M. Atay and J. Jost, Synchronization of discrete-time networks with time-varying couplings,, SIAM J. Math. Analys., 39 (2007), 1231. doi: 10.1137/060657935.

[20]

W. Lu, F. M. Atay and J. Jost, Chaos synchronization in networks of coupled maps with time-varying topologies,, Eur. Phys. J. B, 63 (2008), 399. doi: 10.1140/epjb/e2008-00023-3.

[21]

N. A. Lynch, "Distributed Algorithms,", CA: Morgan Kaufmann, (1996).

[22]

W. Ni and D. Z. Cheng, Leader-following consensus of multi-agent systems under fixed and switching topologies,, Systems & Control Letters, 59 (2010), 209. doi: 10.1016/j.sysconle.2010.01.006.

[23]

W. Michiels, C.-I. Morărescu and S.-I. Niculescu, Consensus problems with distributed delays, with application to traffic flow models,, SIAM J. Control Optim., 48 (2009), 77. doi: 10.1137/060671425.

[24]

L. Moreau, Stability of continuous-time distributed consensus algorithms,, 43rd IEEE Conference on Decision and Control, 4 (2004), 3998.

[25]

L. Moreau, Stability of multiagent systems with time-dependent communication links,, IEEE Trans. Autom. Control, 50 (2005), 169. doi: 10.1109/TAC.2004.841888.

[26]

R. Olfati-Saber and J. S. Shamma, Consensus filters for sensor networks and distributed sensor fusion,, 44th IEEE Conference on Decision and Control 2005, (2005), 6698. doi: 10.1109/CDC.2005.1583238.

[27]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Proceedings of the IEEE, 95 (2007), 215. doi: 10.1109/JPROC.2006.887293.

[28]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520. doi: 10.1109/TAC.2004.834113.

[29]

A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,", Cambridge University Press, (2001). doi: 10.1017/CBO9780511755743.

[30]

J. Shen, A geometric approach to ergodic non-homogeneous Markov chains,, Wavelet Anal. Multi. Meth., 212 (2000), 341.

[31]

A. Tahbaz-Salehi and A. Jadbabaie, A necessary and sufficient condition for consensus over random networks,, IEEE Trans. Autom. Control, 53 (2008), 791. doi: 10.1109/TAC.2008.917743.

[32]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226. doi: 10.1103/PhysRevLett.75.1226.

[33]

A. T. Winfree, "The Geometry of Biological Time,", Springer Verlag, (1980).

[34]

J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices,, Proceedings of AMS, 14 (1963), 733.

[35]

C. W. Wu, Synchronization and convergence of linear dynamics in random directed networks,, IEEE Trans. Autom. Control, 51 (2006), 1207.

[36]

F. Xiao and L. Wang, Consensus protocols for discrete-time multi-agent systems with time-varying delays,, Automatica, 44 (2008), 2577.

[37]

F. Xiao and L. Wang, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays,, IEEE Transactions on Automatic Control, 53 (2008), 1804.

[38]

Y. Zhang and Y.-P. Tian, Consentability and protocol design of multi-agent systems with stochastic switching topology,, Automatica, 45 (2009), 1195.

[1]

Stefano Cosenza, Paolo Crucitti, Luigi Fortuna, Mattia Frasca, Manuela La Rosa, Cecilia Stagni, Lisa Usai. From Net Topology to Synchronization in HR Neuron Grids. Mathematical Biosciences & Engineering, 2005, 2 (1) : 53-77. doi: 10.3934/mbe.2005.2.53

[2]

Marina Dolfin, Mirosław Lachowicz. Modeling opinion dynamics: How the network enhances consensus. Networks & Heterogeneous Media, 2015, 10 (4) : 877-896. doi: 10.3934/nhm.2015.10.877

[3]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[4]

Yilun Shang. Group pinning consensus under fixed and randomly switching topologies with acyclic partition. Networks & Heterogeneous Media, 2014, 9 (3) : 553-573. doi: 10.3934/nhm.2014.9.553

[5]

Shuping Li, Zhen Jin. Impacts of cluster on network topology structure and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3749-3770. doi: 10.3934/dcdsb.2017187

[6]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[7]

Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks. Mathematical Biosciences & Engineering, 2004, 1 (2) : 347-359. doi: 10.3934/mbe.2004.1.347

[8]

Stefano Fasani, Sergio Rinaldi. Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences & Engineering, 2010, 7 (3) : 623-639. doi: 10.3934/mbe.2010.7.623

[9]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks & Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[10]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[11]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[12]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[13]

Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022

[14]

Rui Wang, Xiaoyue Li, Denis S. Mukama. On stochastic multi-group Lotka-Volterra ecosystems with regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3499-3528. doi: 10.3934/dcdsb.2017177

[15]

Qingyun Wang, Xia Shi, Guanrong Chen. Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 607-621. doi: 10.3934/dcdsb.2011.16.607

[16]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[17]

Eugenii Shustin. Dynamics of oscillations in a multi-dimensional delay differential system. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 557-576. doi: 10.3934/dcds.2004.11.557

[18]

Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial & Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047

[19]

Yunan Wu, T. C. Edwin Cheng. Classical duality and existence results for a multi-criteria supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2009, 5 (3) : 615-628. doi: 10.3934/jimo.2009.5.615

[20]

T.C. Edwin Cheng, Yunan Wu. Henig efficiency of a multi-criterion supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2006, 2 (3) : 269-286. doi: 10.3934/jimo.2006.2.269

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]