
Previous Article
A salinity sensor system for estuary studies
 NHM Home
 This Issue

Next Article
Comparison of two data assimilation algorithms for shallow water flows
Control of systems of conservation laws with boundary errors
1.  LAASCNRS, University of Toulouse, 7, avenue du Colonel Roche, 31077 Toulouse, France 
[1] 
Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717731. doi: 10.3934/nhm.2007.2.717 
[2] 
Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121142. doi: 10.3934/mcrf.2013.3.121 
[3] 
JeanMichel Coron, Matthias Kawski, Zhiqiang Wang. Analysis of a conservation law modeling a highly reentrant manufacturing system. Discrete & Continuous Dynamical Systems  B, 2010, 14 (4) : 13371359. doi: 10.3934/dcdsb.2010.14.1337 
[4] 
Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control & Related Fields, 2017, 7 (1) : 5372. doi: 10.3934/mcrf.2017004 
[5] 
Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete & Continuous Dynamical Systems  S, 2012, 5 (3) : 419426. doi: 10.3934/dcdss.2012.5.419 
[6] 
Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control & Related Fields, 2015, 5 (4) : 761780. doi: 10.3934/mcrf.2015.5.761 
[7] 
A. V. Fursikov. Stabilization for the 3D NavierStokes system by feedback boundary control. Discrete & Continuous Dynamical Systems  A, 2004, 10 (1&2) : 289314. doi: 10.3934/dcds.2004.10.289 
[8] 
Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semianalytical solutions. Discrete & Continuous Dynamical Systems  S, 2014, 7 (3) : 525542. doi: 10.3934/dcdss.2014.7.525 
[9] 
Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control & Related Fields, 2018, 8 (0) : 120. doi: 10.3934/mcrf.2019005 
[10] 
Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete & Continuous Dynamical Systems  A, 2000, 6 (2) : 329350. doi: 10.3934/dcds.2000.6.329 
[11] 
Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolichyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems  A, 2018, 38 (6) : 30553083. doi: 10.3934/dcds.2018133 
[12] 
Alberto Bressan, Graziano Guerra. Shiftdifferentiabilitiy of the flow generated by a conservation law. Discrete & Continuous Dynamical Systems  A, 1997, 3 (1) : 3558. doi: 10.3934/dcds.1997.3.35 
[13] 
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255293. doi: 10.3934/nhm.2015.10.255 
[14] 
Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems  A, 2014, 34 (3) : 10991104. doi: 10.3934/dcds.2014.34.1099 
[15] 
Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520530. doi: 10.3934/proc.2007.2007.520 
[16] 
Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete & Continuous Dynamical Systems  A, 2018, 38 (3) : 11871242. doi: 10.3934/dcds.2018050 
[17] 
Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems  A, 2001, 7 (4) : 763780. doi: 10.3934/dcds.2001.7.763 
[18] 
Hongyun Peng, ZhiAn Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular KellerSegel system. Kinetic & Related Models, 2018, 11 (5) : 10851123. doi: 10.3934/krm.2018042 
[19] 
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. selfsimilar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 5176. doi: 10.3934/cpaa.2002.1.51 
[20] 
Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931942. doi: 10.3934/cpaa.2019045 
2017 Impact Factor: 1.187
Tools
Metrics
Other articles
by authors
[Back to Top]