2009, 4(2): 359-380. doi: 10.3934/nhm.2009.4.359

Distributed model predictive control of irrigation canals

1. 

Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628CD Delft, Netherlands, Netherlands

2. 

Department of Water Management, Delft University of Technology, Stevinweg 1, 2628CN Delft, Netherlands

3. 

Delft Center for Systems and Control & Department of Marine and Transport Technology, Delft University of Technology, Mekelweg 2, 2628CD Delft, Netherlands

Received  September 2008 Revised  December 2008 Published  June 2009

Irrigation canals are large-scale systems, consisting of many interacting components, and spanning vast geographical areas. For safe and efficient operation of these canals, maintaining the levels of the water flows close to pre-specified reference values is crucial, both under normal operating conditions as well as in extreme situations.
   Irrigation canals are equipped with local controllers, to control the flow of water by adjusting the settings of control structures such as gates and pumps. Traditionally, the local controllers operate in a decentralized way in the sense that they use local information only, that they are not explicitly aware of the presence of other controllers or subsystems, and that no communication among them takes place. Hence, an obvious drawback of such a decentralized control scheme is that adequate performance at a system-wide level may be jeopardized, due to the unexpected and unanticipated interactions among the subsystems and the actions of the local controllers.
   In this paper we survey the state-of-the-art literature on distributed control of water systems in general, and irrigation canals in particular. We focus on the model predictive control (MPC) strategy, which is a model-based control strategy in which prediction models are used in an optimization to determine optimal control inputs over a given horizon. We discuss how communication among local MPC controllers can be included to improve the performance of the overall system. We present a distributed control scheme in which each controller employs MPC to determine those actions that maintain water levels after disturbances close to pre-specified reference values. Using the presented scheme the local controllers cooperatively strive for obtaining the best system-wide performance. A simulation study on an irrigation canal with seven reaches illustrates the potential of the approach.
Citation: Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals. Networks & Heterogeneous Media, 2009, 4 (2) : 359-380. doi: 10.3934/nhm.2009.4.359
[1]

João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks & Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303

[2]

Judy Day, Jonathan Rubin, Gilles Clermont. Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation. Mathematical Biosciences & Engineering, 2010, 7 (4) : 739-763. doi: 10.3934/mbe.2010.7.739

[3]

Gregory Zitelli, Seddik M. Djouadi, Judy D. Day. Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1127-1139. doi: 10.3934/mbe.2015.12.1127

[4]

M. Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 557-571. doi: 10.3934/dcdsb.2017208

[5]

Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics & Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187

[6]

Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks & Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267

[7]

Ngoc Minh Trang Vu, Laurent Lefèvre. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations & Control Theory, 2015, 4 (2) : 205-220. doi: 10.3934/eect.2015.4.205

[8]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[9]

Jérôme Coville. Nonlocal refuge model with a partial control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1421-1446. doi: 10.3934/dcds.2015.35.1421

[10]

Shui-Nee Chow, Yongfeng Li. Model reference control for SIRS models. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 675-697. doi: 10.3934/dcds.2009.24.675

[11]

Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030

[12]

Gildas Besançon, Didier Georges, Zohra Benayache. Towards nonlinear delay-based control for convection-like distributed systems: The example of water flow control in open channel systems. Networks & Heterogeneous Media, 2009, 4 (2) : 211-221. doi: 10.3934/nhm.2009.4.211

[13]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[14]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential. Evolution Equations & Control Theory, 2017, 6 (1) : 35-58. doi: 10.3934/eect.2017003

[15]

Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations & Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027

[16]

Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial & Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056

[17]

Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219

[18]

M. H. A. Biswas, L. T. Paiva, MdR de Pinho. A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences & Engineering, 2014, 11 (4) : 761-784. doi: 10.3934/mbe.2014.11.761

[19]

Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015

[20]

Sanling Yuan, Yongli Song, Junhui Li. Oscillations in a plasmid turbidostat model with delayed feedback control. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 893-914. doi: 10.3934/dcdsb.2011.15.893

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (63)

[Back to Top]