2006, 1(1): 219-239. doi: 10.3934/nhm.2006.1.219

Equilibria and stability analysis of a branched metabolic network with feedback inhibition

1. 

Laboratoire des systèmes et signaux, Université Paris-Sud, CNRS, Supélec, 91192, Gif-sur-Yvette

2. 

INRIA Sophia-Antipolis, COMORE Project-team, 2004 route des lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France

3. 

Centre for Systems Engineering and Applied Mechanics (CESAME), Université Catholique de Louvain, Bâtiment Euler, 4-6, avenue G.Lemaitre,, 1348 Louvain la Neuve, Belgium

Received  June 2005 Revised  September 2005 Published  January 2006

This paper deals with the analysis of a metabolic network with feedback inhibition. The considered system is an acyclic network of mono-molecular enzymatic reactions in which metabolites can act as feedback regulators on enzymes located "at the beginning" of their own pathway, and in which one metabolite is the root of the whole network. We show, under mild assumptions, the uniqueness of the equilibrium. We then show that this equilibrium is globally attractive if we impose conditions on the kinetic parameters of the metabolic reactions. Finally, when these conditions are not satisfied, we show, with a specific fourth-order example, that the equilibrium may become unstable with an attracting limit cycle.
Citation: Yacine Chitour, Frédéric Grognard, Georges Bastin. Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks & Heterogeneous Media, 2006, 1 (1) : 219-239. doi: 10.3934/nhm.2006.1.219
[1]

Nathaniel J. Merrill, Zheming An, Sean T. McQuade, Federica Garin, Karim Azer, Ruth E. Abrams, Benedetto Piccoli. Stability of metabolic networks via Linear-in-Flux-Expressions. Networks & Heterogeneous Media, 2019, 14 (1) : 101-130. doi: 10.3934/nhm.2019006

[2]

Ginestra Bianconi, Riccardo Zecchina. Viable flux distribution in metabolic networks. Networks & Heterogeneous Media, 2008, 3 (2) : 361-369. doi: 10.3934/nhm.2008.3.361

[3]

Alessia Marigo. Equilibria for data networks. Networks & Heterogeneous Media, 2007, 2 (3) : 497-528. doi: 10.3934/nhm.2007.2.497

[4]

Patrick D. Leenheer, David Angeli, Eduardo D. Sontag. On Predator-Prey Systems and Small-Gain Theorems. Mathematical Biosciences & Engineering, 2005, 2 (1) : 25-42. doi: 10.3934/mbe.2005.2.25

[5]

Joo Sang Lee, Takashi Nishikawa, Adilson E. Motter. Why optimal states recruit fewer reactions in metabolic networks. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2937-2950. doi: 10.3934/dcds.2012.32.2937

[6]

G. A. Enciso, E. D. Sontag. Global attractivity, I/O monotone small-gain theorems, and biological delay systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 549-578. doi: 10.3934/dcds.2006.14.549

[7]

Anne Shiu, Timo de Wolff. Nondegenerate multistationarity in small reaction networks. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2683-2700. doi: 10.3934/dcdsb.2018270

[8]

PaweŁ Hitczenko, Georgi S. Medvedev. Stability of equilibria of randomly perturbed maps. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 369-381. doi: 10.3934/dcdsb.2017017

[9]

Alberto Bressan, Ke Han. Existence of optima and equilibria for traffic flow on networks. Networks & Heterogeneous Media, 2013, 8 (3) : 627-648. doi: 10.3934/nhm.2013.8.627

[10]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[11]

Paul Georgescu, Hong Zhang, Daniel Maxin. The global stability of coexisting equilibria for three models of mutualism. Mathematical Biosciences & Engineering, 2016, 13 (1) : 101-118. doi: 10.3934/mbe.2016.13.101

[12]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[13]

Alberto Bressan, Khai T. Nguyen. Optima and equilibria for traffic flow on networks with backward propagating queues. Networks & Heterogeneous Media, 2015, 10 (4) : 717-748. doi: 10.3934/nhm.2015.10.717

[14]

Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007

[15]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[16]

Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701

[17]

Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373

[18]

Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567

[19]

Elbaz I. Abouelmagd, Juan L. G. Guirao, Aatef Hobiny, Faris Alzahrani. Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1047-1054. doi: 10.3934/dcdss.2015.8.1047

[20]

William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics & Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

[Back to Top]