
-
Previous Article
Homotopy method for matrix rank minimization based on the matrix hard thresholding method
- NACO Home
- This Issue
- Next Article
Indirect methods for fuel-minimal rendezvous with a large population of temporarily captured orbiters
1. | Department of Mathematics, University of Hawaii at Manoa, 2565 McCarthy Mall, Honolulu, Hawaii 96822, USA |
2. | Department of Computational Medicine and Bioinformatics, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48105, USA |
A main objective of this work is to assess the feasibility of space missions to a new population of near Earth asteroids which temporarily orbit Earth, called temporarily captured orbiter. We design rendezvous missions to a large random sample from a database of over 16,000 simulated temporarily captured orbiters using an indirect method based on the maximum principle. The main contribution of this paper is the development of techniques to overcome the difficulty in initializing the algorithm with the construction of the so-called cloud of extremals.
References:
[1] |
EL. Allgower and K. Georg, Numerical Continuation Methods, An Introduction, Springer, Berlin, 1990.
doi: 10.1007/978-3-642-61257-2. |
[2] |
B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Springer-Verlag Berlin, 2003. |
[3] |
B. Bolin, R. Jedicke, M. Granvik, P. Brown, E. Howell, M. Nolan, M. Chyba, G. Patterson and R. Wainscoat,
Detecting earth's temporarily captured natural irregular satellites - minimoons, Icarus, 241 (2014), 280-297.
doi: 10.1016/j.icarus.2014.05.026. |
[4] |
B. J. Caillau, O. Cots and J. Gergaud,
Differential continuation for regular optimal control problems, Optimization Methods and Software, 27 (2012), 177-196.
doi: 10.1080/10556788.2011.593625. |
[5] |
J. B. Caillau, O. Cots and J. Gergaud, HAMPATH: on solving optimal control problems by indirect and path following methods, , http://apo.enseeiht.fr/hampath. |
[6] |
B. J. Caillau, B. Daoud and J. Gergaud,
Minimum fuel control of the planar circular restricted three-body problem, Celestial Mech. Dynam. Astronom., 114 (2012), 137-150.
doi: 10.1007/s10569-012-9443-x. |
[7] |
M. Chyba, T. Haberkorn and R. Jedicke, Minimum fuel round trip from a L2 Earth-Moon Halo orbit to Asteroid 2006RH120, Recent Advances in Celestial and Space Mechanics, Mathematics for Industry, Springer-Verlag, Japan, To Appear, 2016.
doi: 10.1007/978-3-319-27464-5_4. |
[8] |
M. Chyba, G. Patterson, G. Picot, M. Granvik, R. Jedicke and J. Vaubaillon,
Designing rendezvous missions with mini-moons using geometric optimal control, Journal of Industrial and Management Optimization, 10 (2014), 477-501.
doi: 10.3934/jimo.2014.10.477. |
[9] |
M. Chyba, G. Patterson, G. Picot, M. Granvik, R. Jedicke and J. Vaubaillon,
Time-minimal orbital transfers to temporarily-captured natural Earth satellites, Springer Verlag: Advances in Optimization and Control with Applications, 86 (2014), 213-235.
doi: 10.1007/978-3-662-43404-8_12. |
[10] |
AV. Dmitruk and AM. Kaganovich,
The hybrid maximum principle is a consequence of the pontryagin maximum principle, Systems Control Lett., 57 (2008), 964-970.
doi: 10.1016/j.sysconle.2008.05.006. |
[11] |
M. Granvik, J. Vaubaillon and R. Jedicke,
The population of natural Earth satellites, Icarus, 218 (2011), 262-277.
doi: 10.1016/j.icarus.2011.12.003. |
[12] |
G. Mingotti, F. Topputo and F. Bernelli-Zazzera, A Method to Design Sun-Perturbed Earth-to-Moon Low-thrust Transfers with Ballistic Capture, AIDAA, 2007. |
[13] |
G. Patterson, Asteroid Rendezvous Missions Using Indirect Methods of Optimal Control, University of Hawaii at Manoa, dissertation, 2015. |
[14] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, John Wiley & Sons, New York, 1962. |
[15] |
C. Russell and V. Angelopoulos, The ARTEMIS Mission (Google eBook), Springer Science & Business Media, Nov 18, 2013 - Science - 112 pages. |
[16] |
D. Scheeres,
The restricted hill four-body problem with applications to the earth-moon-sun system, Celestial Mechanics and Dynamical Astronomy, 70 (1998), 75-98.
doi: 10.1023/A:1026498608950. |
[17] |
F. Topputo,
On optimal two-impulse Earth-Moon transfers in a four-body model, Celest. Mech. Dyn. Astr., 117 (2013), 279-313.
doi: 10.1007/s10569-013-9513-8. |
[18] |
Hodei Urrutxua, Daniel J. Scheeres, Claudio Bombardelli, Juan L. Gonzalo and Jesús Peláez", What Does it Take to Capture an Asteroid? A Case Study on Capturing Asteroid 2006 RH120, Advances in the Astronautical Sciences, (2014), AAS 14-276. |
[19] |
T. H. Sweetser, S. B. Broschart, V. Angelopoulos, G. J. Whiffen, D. C. Folta, M-K. Chung, S. J. Hatch and M. A. Woodard, ARTEMIS mission design, Space Science Reviews, 165 (2011), 27-57. |
[20] | V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies, Academic Press, 1967. |
show all references
References:
[1] |
EL. Allgower and K. Georg, Numerical Continuation Methods, An Introduction, Springer, Berlin, 1990.
doi: 10.1007/978-3-642-61257-2. |
[2] |
B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Springer-Verlag Berlin, 2003. |
[3] |
B. Bolin, R. Jedicke, M. Granvik, P. Brown, E. Howell, M. Nolan, M. Chyba, G. Patterson and R. Wainscoat,
Detecting earth's temporarily captured natural irregular satellites - minimoons, Icarus, 241 (2014), 280-297.
doi: 10.1016/j.icarus.2014.05.026. |
[4] |
B. J. Caillau, O. Cots and J. Gergaud,
Differential continuation for regular optimal control problems, Optimization Methods and Software, 27 (2012), 177-196.
doi: 10.1080/10556788.2011.593625. |
[5] |
J. B. Caillau, O. Cots and J. Gergaud, HAMPATH: on solving optimal control problems by indirect and path following methods, , http://apo.enseeiht.fr/hampath. |
[6] |
B. J. Caillau, B. Daoud and J. Gergaud,
Minimum fuel control of the planar circular restricted three-body problem, Celestial Mech. Dynam. Astronom., 114 (2012), 137-150.
doi: 10.1007/s10569-012-9443-x. |
[7] |
M. Chyba, T. Haberkorn and R. Jedicke, Minimum fuel round trip from a L2 Earth-Moon Halo orbit to Asteroid 2006RH120, Recent Advances in Celestial and Space Mechanics, Mathematics for Industry, Springer-Verlag, Japan, To Appear, 2016.
doi: 10.1007/978-3-319-27464-5_4. |
[8] |
M. Chyba, G. Patterson, G. Picot, M. Granvik, R. Jedicke and J. Vaubaillon,
Designing rendezvous missions with mini-moons using geometric optimal control, Journal of Industrial and Management Optimization, 10 (2014), 477-501.
doi: 10.3934/jimo.2014.10.477. |
[9] |
M. Chyba, G. Patterson, G. Picot, M. Granvik, R. Jedicke and J. Vaubaillon,
Time-minimal orbital transfers to temporarily-captured natural Earth satellites, Springer Verlag: Advances in Optimization and Control with Applications, 86 (2014), 213-235.
doi: 10.1007/978-3-662-43404-8_12. |
[10] |
AV. Dmitruk and AM. Kaganovich,
The hybrid maximum principle is a consequence of the pontryagin maximum principle, Systems Control Lett., 57 (2008), 964-970.
doi: 10.1016/j.sysconle.2008.05.006. |
[11] |
M. Granvik, J. Vaubaillon and R. Jedicke,
The population of natural Earth satellites, Icarus, 218 (2011), 262-277.
doi: 10.1016/j.icarus.2011.12.003. |
[12] |
G. Mingotti, F. Topputo and F. Bernelli-Zazzera, A Method to Design Sun-Perturbed Earth-to-Moon Low-thrust Transfers with Ballistic Capture, AIDAA, 2007. |
[13] |
G. Patterson, Asteroid Rendezvous Missions Using Indirect Methods of Optimal Control, University of Hawaii at Manoa, dissertation, 2015. |
[14] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, John Wiley & Sons, New York, 1962. |
[15] |
C. Russell and V. Angelopoulos, The ARTEMIS Mission (Google eBook), Springer Science & Business Media, Nov 18, 2013 - Science - 112 pages. |
[16] |
D. Scheeres,
The restricted hill four-body problem with applications to the earth-moon-sun system, Celestial Mechanics and Dynamical Astronomy, 70 (1998), 75-98.
doi: 10.1023/A:1026498608950. |
[17] |
F. Topputo,
On optimal two-impulse Earth-Moon transfers in a four-body model, Celest. Mech. Dyn. Astr., 117 (2013), 279-313.
doi: 10.1007/s10569-013-9513-8. |
[18] |
Hodei Urrutxua, Daniel J. Scheeres, Claudio Bombardelli, Juan L. Gonzalo and Jesús Peláez", What Does it Take to Capture an Asteroid? A Case Study on Capturing Asteroid 2006 RH120, Advances in the Astronautical Sciences, (2014), AAS 14-276. |
[19] |
T. H. Sweetser, S. B. Broschart, V. Angelopoulos, G. J. Whiffen, D. C. Folta, M-K. Chung, S. J. Hatch and M. A. Woodard, ARTEMIS mission design, Space Science Reviews, 165 (2011), 27-57. |
[20] | V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies, Academic Press, 1967. |




























CR3BP parameters | CR4BP parameters | ||
1 norm. dist. (LD) | |||
1 norm. time |
CR3BP parameters | CR4BP parameters | ||
1 norm. dist. (LD) | |||
1 norm. time |
1.00 | 240.00 | 241.00 | 479.00 |
0.42 | 265.64 | 266.43 | 478.62 |
1.00 | 240.00 | 241.00 | 479.00 |
0.42 | 265.64 | 266.43 | 478.62 |
0.0059 | -0.0022 | -0.0075 | -0.0026 | 0.0051 | -0.0070 | -0.0000089 |
0.1029 | -0.0144 | -0.0323 | 0.0116 | 0.0301 | 0.0015 | -0.000071 |
0.0059 | -0.0022 | -0.0075 | -0.0026 | 0.0051 | -0.0070 | -0.0000089 |
0.1029 | -0.0144 | -0.0323 | 0.0116 | 0.0301 | 0.0015 | -0.000071 |
count | mean |
median |
min |
max |
||
-1 | -1 | 640 | 919.6 | 891.6 | 255.9 | 2171.2 |
-2 | -2 | 241 | 1003.7 | 956.5 | 195.6 | 4850.1 |
0 | 0 | 78 | 977.0 | 889.9 | 428.9 | 2241.0 |
-3 | -3 | 54 | 1044.9 | 857.5 | 354.1 | 3753.0 |
1 | 1 | 48 | 1030.3 | 864.2 | 782.5 | 2886.7 |
-1 | 0 | 39 | 781.4 | 788.4 | 269.5 | 1259.0 |
-5 | -5 | 28 | 633.7 | 502.5 | 368.6 | 959.9 |
-2 | -1 | 24 | 919.3 | 893.7 | 387.8 | 1468.1 |
-4 | -4 | 22 | 1478.8 | 1000.8 | 397.1 | 2947.7 |
0 | 1 | 22 | 1891.7 | 2059.4 | 898.6 | 2480.2 |
-2 | -3 | 21 | 1034.6 | 937.0 | 410.3 | 2033.3 |
-1 | -2 | 18 | 1042.9 | 987.1 | 409.4 | 1855.2 |
-4 | -3 | 15 | 1579.3 | 1460.0 | 775.5 | 2767.9 |
0 | -1 | 13 | 1018.2 | 1019.4 | 462.9 | 1524.1 |
2 | 0 | 13 | 2788.0 | 3113.7 | 683.6 | 3160.3 |
-4 | -5 | 10 | 2207.8 | 2201.8 | 2163.5 | 2264.7 |
-5 | -4 | 6 | 851.0 | 795.7 | 740.2 | 1116.2 |
-3 | -4 | 6 | 1361.4 | 1474.7 | 574.1 | 1695.3 |
-3 | -2 | 5 | 1163.4 | 1361.2 | 388.0 | 1438.9 |
-2 | 2 | 4 | 906.0 | 900.5 | 846.6 | 976.4 |
-6 | -4 | 3 | 886.8 | 883.0 | 632.3 | 1145.0 |
-3 | -1 | 3 | 1924.5 | 1926.2 | 1909.6 | 1937.6 |
-1 | 1 | 3 | 898.1 | 753.7 | 641.6 | 1298.9 |
3 | 1 | 3 | 1363.8 | 1363.8 | 1363.8 | 1363.8 |
-18 | 2 | 2 | 3072.1 | 3072.1 | 3063.3 | 3081.0 |
-1 | -3 | 2 | 1723.9 | 1723.9 | 1653.3 | 1794.5 |
2 | -1 | 2 | 902.9 | 902.9 | 559.6 | 1246.2 |
2 | 1 | 2 | 1089.8 | 1089.8 | 1048.6 | 1131.0 |
3 | 0 | 2 | 1090.1 | 1090.1 | 813.0 | 1367.1 |
11 | 2 | 2 | 5735.4 | 5735.4 | 5015.0 | 6455.7 |
-5 | -3 | 1 | 700.9 | 700.9 | 700.9 | 700.9 |
-4 | -2 | 1 | 857.7 | 857.7 | 857.7 | 857.7 |
-2 | 0 | 1 | 710.7 | 710.7 | 710.7 | 710.7 |
4 | 3 | 1 | 1447.7 | 1447.7 | 1447.7 | 1447.7 |
6 | 1 | 1 | 1351.3 | 1351.3 | 1351.3 | 1351.3 |
7 | 1 | 1 | 1165.2 | 1165.2 | 1165.2 | 1165.2 |
8 | 1 | 1 | 1095.6 | 1095.6 | 1095.6 | 1095.6 |
count | mean |
median |
min |
max |
||
-1 | -1 | 640 | 919.6 | 891.6 | 255.9 | 2171.2 |
-2 | -2 | 241 | 1003.7 | 956.5 | 195.6 | 4850.1 |
0 | 0 | 78 | 977.0 | 889.9 | 428.9 | 2241.0 |
-3 | -3 | 54 | 1044.9 | 857.5 | 354.1 | 3753.0 |
1 | 1 | 48 | 1030.3 | 864.2 | 782.5 | 2886.7 |
-1 | 0 | 39 | 781.4 | 788.4 | 269.5 | 1259.0 |
-5 | -5 | 28 | 633.7 | 502.5 | 368.6 | 959.9 |
-2 | -1 | 24 | 919.3 | 893.7 | 387.8 | 1468.1 |
-4 | -4 | 22 | 1478.8 | 1000.8 | 397.1 | 2947.7 |
0 | 1 | 22 | 1891.7 | 2059.4 | 898.6 | 2480.2 |
-2 | -3 | 21 | 1034.6 | 937.0 | 410.3 | 2033.3 |
-1 | -2 | 18 | 1042.9 | 987.1 | 409.4 | 1855.2 |
-4 | -3 | 15 | 1579.3 | 1460.0 | 775.5 | 2767.9 |
0 | -1 | 13 | 1018.2 | 1019.4 | 462.9 | 1524.1 |
2 | 0 | 13 | 2788.0 | 3113.7 | 683.6 | 3160.3 |
-4 | -5 | 10 | 2207.8 | 2201.8 | 2163.5 | 2264.7 |
-5 | -4 | 6 | 851.0 | 795.7 | 740.2 | 1116.2 |
-3 | -4 | 6 | 1361.4 | 1474.7 | 574.1 | 1695.3 |
-3 | -2 | 5 | 1163.4 | 1361.2 | 388.0 | 1438.9 |
-2 | 2 | 4 | 906.0 | 900.5 | 846.6 | 976.4 |
-6 | -4 | 3 | 886.8 | 883.0 | 632.3 | 1145.0 |
-3 | -1 | 3 | 1924.5 | 1926.2 | 1909.6 | 1937.6 |
-1 | 1 | 3 | 898.1 | 753.7 | 641.6 | 1298.9 |
3 | 1 | 3 | 1363.8 | 1363.8 | 1363.8 | 1363.8 |
-18 | 2 | 2 | 3072.1 | 3072.1 | 3063.3 | 3081.0 |
-1 | -3 | 2 | 1723.9 | 1723.9 | 1653.3 | 1794.5 |
2 | -1 | 2 | 902.9 | 902.9 | 559.6 | 1246.2 |
2 | 1 | 2 | 1089.8 | 1089.8 | 1048.6 | 1131.0 |
3 | 0 | 2 | 1090.1 | 1090.1 | 813.0 | 1367.1 |
11 | 2 | 2 | 5735.4 | 5735.4 | 5015.0 | 6455.7 |
-5 | -3 | 1 | 700.9 | 700.9 | 700.9 | 700.9 |
-4 | -2 | 1 | 857.7 | 857.7 | 857.7 | 857.7 |
-2 | 0 | 1 | 710.7 | 710.7 | 710.7 | 710.7 |
4 | 3 | 1 | 1447.7 | 1447.7 | 1447.7 | 1447.7 |
6 | 1 | 1 | 1351.3 | 1351.3 | 1351.3 | 1351.3 |
7 | 1 | 1 | 1165.2 | 1165.2 | 1165.2 | 1165.2 |
8 | 1 | 1 | 1095.6 | 1095.6 | 1095.6 | 1095.6 |
[1] |
Ugo Locatelli, Antonio Giorgilli. Invariant tori in the Sun--Jupiter--Saturn system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 377-398. doi: 10.3934/dcdsb.2007.7.377 |
[2] |
Jaume Llibre, Ricardo Miranda Martins, Marco Antonio Teixeira. On the birth of minimal sets for perturbed reversible vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 763-777. doi: 10.3934/dcds.2011.31.763 |
[3] |
Frederic Gabern, Àngel Jorba. A restricted four-body model for the dynamics near the Lagrangian points of the Sun-Jupiter system. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 143-182. doi: 10.3934/dcdsb.2001.1.143 |
[4] |
W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893 |
[5] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[6] |
Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-20. doi: 10.3934/dcdsb.2018328 |
[7] |
Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496 |
[8] |
Yavdat Il'yasov, Nadir Sari. Solutions of minimal period for a Hamiltonian system with a changing sign potential. Communications on Pure & Applied Analysis, 2005, 4 (1) : 175-185. doi: 10.3934/cpaa.2005.4.175 |
[9] |
Rafael Diaz, Laura Gomez. Indirect influences in international trade. Networks & Heterogeneous Media, 2015, 10 (1) : 149-165. doi: 10.3934/nhm.2015.10.149 |
[10] |
Mounir Balti, Ramzi May. Asymptotic for the perturbed heavy ball system with vanishing damping term. Evolution Equations & Control Theory, 2017, 6 (2) : 177-186. doi: 10.3934/eect.2017010 |
[11] |
Alexandru Kristály, Ildikó-Ilona Mezei. Multiple solutions for a perturbed system on strip-like domains. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 789-796. doi: 10.3934/dcdss.2012.5.789 |
[12] |
Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199 |
[13] |
Gautier Picot. Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 245-269. doi: 10.3934/dcdsb.2012.17.245 |
[14] |
Huiqing Zhu, Runchang Lin. $L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1493-1505. doi: 10.3934/dcdsb.2013.18.1493 |
[15] |
Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205 |
[16] |
Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations & Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011 |
[17] |
Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I. Compactions and peakons. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 419-432. doi: 10.3934/dcds.1997.3.419 |
[18] |
Juncheng Wei, Jun Yang. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 465-508. doi: 10.3934/dcds.2008.22.465 |
[19] |
Roberto Guglielmi. Indirect stabilization of hyperbolic systems through resolvent estimates. Evolution Equations & Control Theory, 2017, 6 (1) : 59-75. doi: 10.3934/eect.2017004 |
[20] |
Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]