March 2019, 9(1): 15-22. doi: 10.3934/naco.2019002

Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation AXA*=B

Faculty of exact sciences and sciences of nature and life, Department of Mathematics, University of Oum El Bouaghi, 04000, Algeria

* Corresponding author: Sihem Guerarra

Received  September 2017 Revised  April 2018 Published  October 2018

This work is devoted to establish the extremal inertias ofthe two submatrices $X_{1}$ and $X_{4}$ in a Hermitian least rank solution $X$of the matrix equation $AXA^{*}=B$. From these formulas, necessary andsufficient conditions for these submatrices to be positive (nonpositive,negative, nonnegative) definite are achieved.

Citation: Sihem Guerarra. Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation AXA*=B. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 15-22. doi: 10.3934/naco.2019002
References:
[1]

A. Ben Israel and T. Greville, Generalized Inverse, Theory and Applications, 2nd edition, Springer, New York, 2003. doi: 10.1007/978-1-4612-0873-0.

[2]

S. L. Cambell and C. D. Meyer, Generalized Inverse of Linear Transformations, Society for Industrial and Applied Mathematics, 2008. doi: 10.1007/978-1-4612-0873-0.

[3]

S. Guerarra and S. Guedjiba, Common Hermitian least-rank solution of matrix equations A1XA1* = B1 and A2XA2* = B2 subject to inequality restrictions, Facta universitatis (Niš). Ser. Math. Inform., 30 (2015), 539-554. doi: 10.2307/2152750.

[4]

Y. Liu and Y. Tian, Extremal ranks of submatrices in an Hermitian solution to the matrix equation AXA* = B with applications, J. Appl. Math. Comput., 32 (2010), 289-301. doi: 10.2307/2152750.

[5]

Y. LiuY. Tian and Y. Takane, Ranks of Hermitian and skew-Hermitian solutions to the matrix equation AXA* = B, Linear Algebra Appl., 431 (2009), 2359-2372. doi: 10.2307/2152750.

[6]

G. Marsaglia and G.P.H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra., 2 (1974), 269-292. doi: 10.2307/2152750.

[7]

Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755. doi: 10.2307/2152750.

[8]

Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433 (2010), 263-296. doi: 10.2307/2152750.

[9]

Y. Tian, Maximization and minimization of the rank and inertias of the Hermitian matrix expression A - BX - (BX)* with applications, Linear Algebra Appl., 434 (2011), 2109-2139. doi: 10.2307/2152750.

[10]

Y. Tian, Least-squares solutions and least-rank solutions of the matrix equation AXA* = B and their relations, Numer. Linear Algebra Appl., 20 (2013), 713-722. doi: 10.2307/2152750.

[11]

Y. Tian and S. Cheng, The maximal and minimal ranks of A - BXC with applications, New York Journal of Mathematics, 9 (2003), 345-362. doi: 10.2307/2152750.

show all references

References:
[2]

S. L. Cambell and C. D. Meyer, Generalized Inverse of Linear Transformations, Society for Industrial and Applied Mathematics, 2008. doi: 10.1007/978-1-4612-0873-0.

[3]

S. Guerarra and S. Guedjiba, Common Hermitian least-rank solution of matrix equations A1XA1* = B1 and A2XA2* = B2 subject to inequality restrictions, Facta universitatis (Niš). Ser. Math. Inform., 30 (2015), 539-554. doi: 10.2307/2152750.

[4]

Y. Liu and Y. Tian, Extremal ranks of submatrices in an Hermitian solution to the matrix equation AXA* = B with applications, J. Appl. Math. Comput., 32 (2010), 289-301. doi: 10.2307/2152750.

[5]

Y. LiuY. Tian and Y. Takane, Ranks of Hermitian and skew-Hermitian solutions to the matrix equation AXA* = B, Linear Algebra Appl., 431 (2009), 2359-2372. doi: 10.2307/2152750.

[6]

G. Marsaglia and G.P.H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra., 2 (1974), 269-292. doi: 10.2307/2152750.

[7]

Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755. doi: 10.2307/2152750.

[8]

Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433 (2010), 263-296. doi: 10.2307/2152750.

[9]

Y. Tian, Maximization and minimization of the rank and inertias of the Hermitian matrix expression A - BX - (BX)* with applications, Linear Algebra Appl., 434 (2011), 2109-2139. doi: 10.2307/2152750.

[10]

Y. Tian, Least-squares solutions and least-rank solutions of the matrix equation AXA* = B and their relations, Numer. Linear Algebra Appl., 20 (2013), 713-722. doi: 10.2307/2152750.

[11]

Y. Tian and S. Cheng, The maximal and minimal ranks of A - BXC with applications, New York Journal of Mathematics, 9 (2003), 345-362. doi: 10.2307/2152750.

[1]

Yun Cai, Song Li. Convergence and stability of iteratively reweighted least squares for low-rank matrix recovery. Inverse Problems & Imaging, 2017, 11 (4) : 643-661. doi: 10.3934/ipi.2017030

[2]

Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171

[3]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[4]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

[5]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[6]

Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014

[7]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[8]

Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237

[9]

Arthur Henrique Caixeta, Irena Lasiecka, Valéria Neves Domingos Cavalcanti. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evolution Equations & Control Theory, 2016, 5 (4) : 661-676. doi: 10.3934/eect.2016024

[10]

Luciano Abadías, Carlos Lizama, Marina Murillo-Arcila. Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay. Communications on Pure & Applied Analysis, 2018, 17 (1) : 243-265. doi: 10.3934/cpaa.2018015

[11]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[12]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[13]

Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems & Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601

[14]

Yongge Tian. A survey on rank and inertia optimization problems of the matrix-valued function $A + BXB^{*}$. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 289-326. doi: 10.3934/naco.2015.5.289

[15]

Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127

[16]

Irena PawŁow. The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2711-2739. doi: 10.3934/dcds.2015.35.2711

[17]

H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175

[18]

Henri Berestycki, Juncheng Wei. On least energy solutions to a semilinear elliptic equation in a strip. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1083-1099. doi: 10.3934/dcds.2010.28.1083

[19]

Marko Nedeljkov, Sanja Ružičić. On the uniqueness of solution to generalized Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4439-4460. doi: 10.3934/dcds.2017190

[20]

Sonia Martínez, Jorge Cortés, Francesco Bullo. A catalog of inverse-kinematics planners for underactuated systems on matrix groups. Journal of Geometric Mechanics, 2009, 1 (4) : 445-460. doi: 10.3934/jgm.2009.1.445

 Impact Factor: 

Metrics

  • PDF downloads (58)
  • HTML views (74)
  • Cited by (0)

Other articles
by authors

[Back to Top]