December 2018, 8(4): 493-503. doi: 10.3934/naco.2018031

Further results on the perturbation estimations for the Drazin inverse

School of Mathematical Science, Harbin Normal University, Harbin 150025, China

* Corresponding author: H. Ma

Received  February 2018 Revised  March 2018 Published  September 2018

Fund Project: H. Ma is supported by Scientific Research Foundation of Heilongjiang Provincial Education Department (Grant No.12541232)
X. Gao is supported by Scientific Research Foundation of Heilongjiang Provincial Education Department (Grant No.12541232)

For
$n× n$
complex singular matrix
$A$
with ind
$(A) = k>1$
, let
$A^D$
be the Drazin inverse of
$A$
. If a matrix
$B = A+E$
with ind
$(B) = 1$
is said to be an acute perturbation of
$A$
, if
$\|E\|$
is small and the spectral radius of
$B_gB- A^DA$
satisfies
$ρ(B_gB- A^DA) < 1,$
where
$B_g$
is the group inverse of
$B$
.
The acute perturbation coincides with the stable perturbation of the group inverse, if the matrix
$B$
satisfies geometrical condition:
${\mathcal R}(B) \cap {\mathcal N}(A^k) = \{ {\bf 0} \}, {\mathcal N}(B)\cap {\mathcal R}(A^k) = \{ {\bf 0} \}$
which introduced by Vélez-Cerrada, Robles, and Castro-González, (Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, Appl. Math. Comput., 215 (2009), 2154-2161).
Furthermore, two examples are provided to illustrate the acute perturbation of the Drazin inverse. We prove the correctness of the conjecture in a special case of ind
$(B) = 1$
by Wei (Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135-157).
Citation: Haifeng Ma, Xiaoshuang Gao. Further results on the perturbation estimations for the Drazin inverse. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 493-503. doi: 10.3934/naco.2018031
References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses Theory and Applications, Wiley, New York, 1974; 2nd edition, Springer, New York, 2003.

[2]

A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611971262.

[3]

S. L. Campbell and C. D. Meyer, Continuity properties of the Drazin pseudoinverses, Linear Algebra Appl., 10 (1975), 77-83.

[4]

S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979; SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719048.ch0.

[5]

N. Castro-GonzálezJ. Robles and J. Y. Vélez-Cerrada, Characterizations of a class of matrices and perturbation of the Drazin inverse, SIAM. J. Matrix Anal. Appl., 30 (2008), 882-897. doi: 10.1137/060653366.

[6]

N. Castro-González and J. Y. Vélez-Cerrada, On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces, J. Math. Anal. Appl., 341 (2008), 1213-1223. doi: 10.1016/j.jmaa.2007.10.066.

[7]

N. Castro-GonzálezM. F. Martínez-Serrano and J. Robles, An extension of the perturbation analysis for the Drazin inverse, Electron. J. Linear Algebra, 22 (2011), 539-556. doi: 10.13001/1081-3810.1456.

[8]

D. S. Cvetković-Ilić and Y. Wei, Algebraic Properties of Generalized Inverses, Springer, Singapore, 2017. doi: 10.1007/978-981-10-6349-7.

[9]

M. EiermanI. Marek and W. Niethammer, On the solution of singular linear systems of algebraic equations by semi-iterative methods, Numer. Math., 53 (1988), 265-283. doi: 10.1007/BF01404464.

[10]

A. Galántai, Projectors and Projection Methods, Springer, New York, 2004.

[11]

R. A. Horn and C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, Cambridge, 2013.

[12]

J. Ji and Y. Wei, The Drazin inverse of an even-order tensor and its application to singular tensor equations, Comput. Math. Appl., 75 (2018), 3402-3413. doi: 10.1016/j.camwa.2018.02.006.

[13]

S. Kirkland and M. Neumann, Group Inverses of M-Matrices and their Applications, CRC Press, 2012.

[14]

J. J. Koliha, Error bounds for a general perturbation of the Drazin inverse, Appl. Math. Comput., 126 (2002), 181-185. doi: 10.1016/S0096-3003(00)00149-1.

[15]

X. Li and Y. Wei, An improvement on the perturbation of the group inverse and oblique projection, Linear Algebra Appl., 338 (2001), 53-66. doi: 10.1016/S0024-3795(01)00369-X.

[16]

X. Li and Y. Wei, A note on the perturbation bound of the Drazin inverse, Appl. Math. Comput., 140 (2003), 329-340. doi: 10.1016/S0096-3003(02)00230-8.

[17]

H. Ma, Acute perturbation bounds of weighted Moore-Penrose inverse, Int. J. Comput. Math., 95 (2018), 710-720. doi: 10.1080/00207160.2017.1294689.

[18]

C. D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Review, 17 (1975), 443-464. doi: 10.1137/1017044.

[19]

G. Rong, The error bound of the perturbation of the Drazin inverse, Linear Algebra Appl., 47 (1982), 159-168. doi: 10.1016/0024-3795(82)90233-6.

[20]

A. Sidi and Y. Kanevsky, Orthogonal polynomials and semi-iterative methods for the Drazin-inverse solution of singular linear systems, Numer. Math., 93 (2003), 563-581. doi: 10.1007/s002110100379.

[21]

G. W. Stewart, On the perturbation of pseudo-inverse, projections and linear least squares problems, SIAM Review, 19 (1977), 634-662. doi: 10.1137/1019104.

[22]

G. W. Stewart, On the numerical analysis of oblique projectors, SIAM J. Matrix Anal. Appl., 32 (2011), 309-348. doi: 10.1137/100792093.

[23]

D. Szyld, Equivalence of convergence conditions for iterative methods for singular equations, Numer. Linear Algebra Appl., 1 (1994), 151-154. doi: 10.1002/nla.1680010206.

[24]

D. Szyld, The many proofs of an identity on the norm of oblique projections, Numer. Algorithms, 42 (2006), 309-323. doi: 10.1007/s11075-006-9046-2.

[25]

J. Y. Vélez-CerradaJ. Robles and N. Castro-González, Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, Appl. Math. Comput., 215 (2009), 2154-2161. doi: 10.1016/j.amc.2009.08.003.

[26]

P. Å. Wedin, Perturbation theory for pseudo-inverses, BIT, 13 (1973), 217-232.

[27]

Y. Wei, Expressions for the Drazin inverse of a 2 × 2 block matrix, Linear Multilinear Algebra, 45 (1998), 131-146. doi: 10.1080/03081089808818583.

[28]

Y. Wei, On the perturbation of the group inverse and oblique projection, Appl. Math. Comput., 98 (1999), 29-42. doi: 10.1016/S0096-3003(97)10151-5.

[29]

Y. Wei, Perturbation bound of the Drazin inverse, Appl. Math. Comput., 125 (2002), 231-244. doi: 10.1016/S0096-3003(00)00126-0.

[30]

Y. Wei, Generalized inverses of matrices, Chapter 27 of Handbook of Linear Algebra, Edited by Leslie Hogben, Second edition, CRC Press, Boca Raton, FL, 2014.

[31]

Y. Wei, Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135-157. doi: 10.1016/j.laa.2017.08.009.

[32]

Y. Wei and X. Li, An improvement on perturbation bounds for the Drazin inverse, Numer. Linear Algebra Appl., 10 (2003), 563-575. doi: 10.1002/nla.336.

[33]

Y. WeiX. LiF. Bu and F. Zhang, Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices-application of perturbation theory for simple invariant subspaces, Linear Algebra Appl., 419 (2006), 765-771. doi: 10.1016/j.laa.2006.06.015.

[34]

Y. WeiX. Li and F. Bu, A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces, SIAM J. Matrix Anal. Appl., 27 (2005), 72-81. doi: 10.1137/S0895479804439948.

[35]

Y. Wei and H. Wu, The perturbation of the Drazin inverse and oblique projection, Appl. Math. Lett., 13 (2000), 77-83. doi: 10.1016/S0893-9659(99)00189-5.

[36]

Y. Wei and H. Wu, Challenging problems on the perturbation of Drazin inverse, Ann. Oper. Res., 103 (2001), 371-378. doi: 10.1023/A:1012993626289.

[37]

Q. XuC. Song and Y. Wei, The stable perturbation of the Drazin inverse of the square matrices, SIAM J. Matrix Anal. Appl., 31 (2010), 1507-1520. doi: 10.1137/080741793.

show all references

References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses Theory and Applications, Wiley, New York, 1974; 2nd edition, Springer, New York, 2003.

[2]

A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611971262.

[3]

S. L. Campbell and C. D. Meyer, Continuity properties of the Drazin pseudoinverses, Linear Algebra Appl., 10 (1975), 77-83.

[4]

S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979; SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719048.ch0.

[5]

N. Castro-GonzálezJ. Robles and J. Y. Vélez-Cerrada, Characterizations of a class of matrices and perturbation of the Drazin inverse, SIAM. J. Matrix Anal. Appl., 30 (2008), 882-897. doi: 10.1137/060653366.

[6]

N. Castro-González and J. Y. Vélez-Cerrada, On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces, J. Math. Anal. Appl., 341 (2008), 1213-1223. doi: 10.1016/j.jmaa.2007.10.066.

[7]

N. Castro-GonzálezM. F. Martínez-Serrano and J. Robles, An extension of the perturbation analysis for the Drazin inverse, Electron. J. Linear Algebra, 22 (2011), 539-556. doi: 10.13001/1081-3810.1456.

[8]

D. S. Cvetković-Ilić and Y. Wei, Algebraic Properties of Generalized Inverses, Springer, Singapore, 2017. doi: 10.1007/978-981-10-6349-7.

[9]

M. EiermanI. Marek and W. Niethammer, On the solution of singular linear systems of algebraic equations by semi-iterative methods, Numer. Math., 53 (1988), 265-283. doi: 10.1007/BF01404464.

[10]

A. Galántai, Projectors and Projection Methods, Springer, New York, 2004.

[11]

R. A. Horn and C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, Cambridge, 2013.

[12]

J. Ji and Y. Wei, The Drazin inverse of an even-order tensor and its application to singular tensor equations, Comput. Math. Appl., 75 (2018), 3402-3413. doi: 10.1016/j.camwa.2018.02.006.

[13]

S. Kirkland and M. Neumann, Group Inverses of M-Matrices and their Applications, CRC Press, 2012.

[14]

J. J. Koliha, Error bounds for a general perturbation of the Drazin inverse, Appl. Math. Comput., 126 (2002), 181-185. doi: 10.1016/S0096-3003(00)00149-1.

[15]

X. Li and Y. Wei, An improvement on the perturbation of the group inverse and oblique projection, Linear Algebra Appl., 338 (2001), 53-66. doi: 10.1016/S0024-3795(01)00369-X.

[16]

X. Li and Y. Wei, A note on the perturbation bound of the Drazin inverse, Appl. Math. Comput., 140 (2003), 329-340. doi: 10.1016/S0096-3003(02)00230-8.

[17]

H. Ma, Acute perturbation bounds of weighted Moore-Penrose inverse, Int. J. Comput. Math., 95 (2018), 710-720. doi: 10.1080/00207160.2017.1294689.

[18]

C. D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Review, 17 (1975), 443-464. doi: 10.1137/1017044.

[19]

G. Rong, The error bound of the perturbation of the Drazin inverse, Linear Algebra Appl., 47 (1982), 159-168. doi: 10.1016/0024-3795(82)90233-6.

[20]

A. Sidi and Y. Kanevsky, Orthogonal polynomials and semi-iterative methods for the Drazin-inverse solution of singular linear systems, Numer. Math., 93 (2003), 563-581. doi: 10.1007/s002110100379.

[21]

G. W. Stewart, On the perturbation of pseudo-inverse, projections and linear least squares problems, SIAM Review, 19 (1977), 634-662. doi: 10.1137/1019104.

[22]

G. W. Stewart, On the numerical analysis of oblique projectors, SIAM J. Matrix Anal. Appl., 32 (2011), 309-348. doi: 10.1137/100792093.

[23]

D. Szyld, Equivalence of convergence conditions for iterative methods for singular equations, Numer. Linear Algebra Appl., 1 (1994), 151-154. doi: 10.1002/nla.1680010206.

[24]

D. Szyld, The many proofs of an identity on the norm of oblique projections, Numer. Algorithms, 42 (2006), 309-323. doi: 10.1007/s11075-006-9046-2.

[25]

J. Y. Vélez-CerradaJ. Robles and N. Castro-González, Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, Appl. Math. Comput., 215 (2009), 2154-2161. doi: 10.1016/j.amc.2009.08.003.

[26]

P. Å. Wedin, Perturbation theory for pseudo-inverses, BIT, 13 (1973), 217-232.

[27]

Y. Wei, Expressions for the Drazin inverse of a 2 × 2 block matrix, Linear Multilinear Algebra, 45 (1998), 131-146. doi: 10.1080/03081089808818583.

[28]

Y. Wei, On the perturbation of the group inverse and oblique projection, Appl. Math. Comput., 98 (1999), 29-42. doi: 10.1016/S0096-3003(97)10151-5.

[29]

Y. Wei, Perturbation bound of the Drazin inverse, Appl. Math. Comput., 125 (2002), 231-244. doi: 10.1016/S0096-3003(00)00126-0.

[30]

Y. Wei, Generalized inverses of matrices, Chapter 27 of Handbook of Linear Algebra, Edited by Leslie Hogben, Second edition, CRC Press, Boca Raton, FL, 2014.

[31]

Y. Wei, Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135-157. doi: 10.1016/j.laa.2017.08.009.

[32]

Y. Wei and X. Li, An improvement on perturbation bounds for the Drazin inverse, Numer. Linear Algebra Appl., 10 (2003), 563-575. doi: 10.1002/nla.336.

[33]

Y. WeiX. LiF. Bu and F. Zhang, Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices-application of perturbation theory for simple invariant subspaces, Linear Algebra Appl., 419 (2006), 765-771. doi: 10.1016/j.laa.2006.06.015.

[34]

Y. WeiX. Li and F. Bu, A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces, SIAM J. Matrix Anal. Appl., 27 (2005), 72-81. doi: 10.1137/S0895479804439948.

[35]

Y. Wei and H. Wu, The perturbation of the Drazin inverse and oblique projection, Appl. Math. Lett., 13 (2000), 77-83. doi: 10.1016/S0893-9659(99)00189-5.

[36]

Y. Wei and H. Wu, Challenging problems on the perturbation of Drazin inverse, Ann. Oper. Res., 103 (2001), 371-378. doi: 10.1023/A:1012993626289.

[37]

Q. XuC. Song and Y. Wei, The stable perturbation of the Drazin inverse of the square matrices, SIAM J. Matrix Anal. Appl., 31 (2010), 1507-1520. doi: 10.1137/080741793.

[1]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[2]

Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems & Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93

[3]

Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems & Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843

[4]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[5]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems & Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

[6]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[7]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[8]

Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232

[9]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[10]

Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3977-3991. doi: 10.3934/dcds.2018173

[11]

Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems & Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239

[12]

Suna Ma, Huiyuan Li, Zhimin Zhang. Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-27. doi: 10.3934/dcdsb.2018221

[13]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control & Related Fields, 2018, 8 (0) : 1-24. doi: 10.3934/mcrf.2019015

[14]

Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381

[15]

Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143

[16]

Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447

[17]

Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial & Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117

[18]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[19]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[20]

Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147

 Impact Factor: 

Metrics

  • PDF downloads (34)
  • HTML views (174)
  • Cited by (0)

Other articles
by authors

[Back to Top]