December 2018, 8(4): 441-449. doi: 10.3934/naco.2018027

On the cyclic pseudomonotonicity and the proximal point algorithm

1. 

Department of Mathematics, University of Zanjan, P. O. Box 45195-313, Zanjan, Iran

2. 

Department of Mathematics, Institute for Advanced Studies in Basic Sciences, P. O. Box 45195-1159, Zanjan, Iran

* Corresponding author

Received  June 2017 Revised  August 2018 Published  September 2018

We introduce various versions of cyclic pseudomonotonicity and study the relations between them. Some examples about the relation between them and monotonicity are also presented. By imposing some assumptions on the cyclic pseudomonotone bifunctions, we study the convergence analysis of the proximal point algorithm which has been studied by Iusem and Sosa [5] for pseudomonotone bifunctions, with better assumptions.

Citation: Hadi Khatibzadeh, Vahid Mohebbi, Mohammad Hossein Alizadeh. On the cyclic pseudomonotonicity and the proximal point algorithm. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 441-449. doi: 10.3934/naco.2018027
References:
[1]

Z. Chbani and H. Riahi, Existence and asymptotic behaviour for solution of dynamical equilibrium systems, Evol. Equ. Control Theory, 3 (2014), 1-14. doi: 10.3934/eect.2014.3.1.

[2]

N. Hadjisavvas and H. Khatibzadeh, Maximal monotonicity of bifunctions, Optimization, 59 (2010), 147-160. doi: 10.1080/02331930801951116.

[3]

N. HadjisavvasS. Schaible and N. C. Wong, Pseudomonotone operator: a survey of the theory and its applications, J. Optim. Theory Appl., 152 (2012), 1-20. doi: 10.1007/s10957-011-9912-5.

[4]

A. N. IusemG. Kassay and W. Sosa, On certain conditions for the existence of solutions of equilibrium problems, Math. Program., 116 (2009), 25-273. doi: 10.1007/s10107-007-0125-5.

[5]

A. N. Iusem and W. Sosa, On the proximal point method for equilibrium problems in Hilbert spaces, Optimization, 59 (2010), 1259-1274. doi: 10.1080/02331931003603133.

[6]

H. KhatibzadehV. Mohebbi and S. Ranjbar, Convergence analysis of the proximal point algorithm for pseudo-monotone equilibrium problems, Optim. Methods Softw., 30 (2015), 1146-1163. doi: 10.1080/10556788.2015.1025402.

[7]

H. Khatibzadeh and V. Mohebbi, Proximal point algorithm for infinite pseudo-monotone bifunctions, Optimization, 65 (2016), 1629-1639. doi: 10.1080/02331934.2016.1153639.

[8]

B. Martinet, Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle, 3 (1970), 154-158.

[9]

L. E. MuuV. H. Nguyen and N. V. Quy, On Nash-Cournot oligopolistic market equilibrium models with concave cost functions, J. Global Optim., 41 (2008), 351-364. doi: 10.1007/s10898-007-9243-0.

[10]

T. D. QuocP. N. Anh and L. D. Mu, Dual extragradient algorithms extended to equilibrium problems, J. Global Optim., 52 (2012), 139-159. doi: 10.1007/s10898-011-9693-2.

[11]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898. doi: 10.1137/0314056.

show all references

References:
[1]

Z. Chbani and H. Riahi, Existence and asymptotic behaviour for solution of dynamical equilibrium systems, Evol. Equ. Control Theory, 3 (2014), 1-14. doi: 10.3934/eect.2014.3.1.

[2]

N. Hadjisavvas and H. Khatibzadeh, Maximal monotonicity of bifunctions, Optimization, 59 (2010), 147-160. doi: 10.1080/02331930801951116.

[3]

N. HadjisavvasS. Schaible and N. C. Wong, Pseudomonotone operator: a survey of the theory and its applications, J. Optim. Theory Appl., 152 (2012), 1-20. doi: 10.1007/s10957-011-9912-5.

[4]

A. N. IusemG. Kassay and W. Sosa, On certain conditions for the existence of solutions of equilibrium problems, Math. Program., 116 (2009), 25-273. doi: 10.1007/s10107-007-0125-5.

[5]

A. N. Iusem and W. Sosa, On the proximal point method for equilibrium problems in Hilbert spaces, Optimization, 59 (2010), 1259-1274. doi: 10.1080/02331931003603133.

[6]

H. KhatibzadehV. Mohebbi and S. Ranjbar, Convergence analysis of the proximal point algorithm for pseudo-monotone equilibrium problems, Optim. Methods Softw., 30 (2015), 1146-1163. doi: 10.1080/10556788.2015.1025402.

[7]

H. Khatibzadeh and V. Mohebbi, Proximal point algorithm for infinite pseudo-monotone bifunctions, Optimization, 65 (2016), 1629-1639. doi: 10.1080/02331934.2016.1153639.

[8]

B. Martinet, Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle, 3 (1970), 154-158.

[9]

L. E. MuuV. H. Nguyen and N. V. Quy, On Nash-Cournot oligopolistic market equilibrium models with concave cost functions, J. Global Optim., 41 (2008), 351-364. doi: 10.1007/s10898-007-9243-0.

[10]

T. D. QuocP. N. Anh and L. D. Mu, Dual extragradient algorithms extended to equilibrium problems, J. Global Optim., 52 (2012), 139-159. doi: 10.1007/s10898-011-9693-2.

[11]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898. doi: 10.1137/0314056.

[1]

Giuseppe Marino, Hong-Kun Xu. Convergence of generalized proximal point algorithms. Communications on Pure & Applied Analysis, 2004, 3 (4) : 791-808. doi: 10.3934/cpaa.2004.3.791

[2]

Xin Zuo, Chun-Rong Chen, Hong-Zhi Wei. Solution continuity of parametric generalized vector equilibrium problems with strictly pseudomonotone mappings. Journal of Industrial & Management Optimization, 2017, 13 (1) : 477-488. doi: 10.3934/jimo.2016027

[3]

Zaki Chbani, Hassan Riahi. Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 353-366. doi: 10.3934/naco.2013.3.353

[4]

Zheng-Hai Huang, Shang-Wen Xu. Convergence properties of a non-interior-point smoothing algorithm for the P*NCP. Journal of Industrial & Management Optimization, 2007, 3 (3) : 569-584. doi: 10.3934/jimo.2007.3.569

[5]

Jie Shen, Jian Lv, Fang-Fang Guo, Ya-Li Gao, Rui Zhao. A new proximal chebychev center cutting plane algorithm for nonsmooth optimization and its convergence. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1143-1155. doi: 10.3934/jimo.2018003

[6]

Ram U. Verma. On the generalized proximal point algorithm with applications to inclusion problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 381-390. doi: 10.3934/jimo.2009.5.381

[7]

Yu-Lin Chang, Jein-Shan Chen, Jia Wu. Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function. Journal of Industrial & Management Optimization, 2013, 9 (1) : 153-169. doi: 10.3934/jimo.2013.9.153

[8]

Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333

[9]

Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449

[10]

Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537

[11]

Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685

[12]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[13]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[14]

Annamaria Barbagallo, Rosalba Di Vincenzo, Stéphane Pia. On strong Lagrange duality for weighted traffic equilibrium problem. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1097-1113. doi: 10.3934/dcds.2011.31.1097

[15]

Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601

[16]

Adela Capătă. Optimality conditions for strong vector equilibrium problems under a weak constraint qualification. Journal of Industrial & Management Optimization, 2015, 11 (2) : 563-574. doi: 10.3934/jimo.2015.11.563

[17]

Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 1. Convergence to equilibrium. Conference Publications, 2011, 2011 (Special) : 931-940. doi: 10.3934/proc.2011.2011.931

[18]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[19]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[20]

Stefano Galatolo, Isaia Nisoli, Benoît Saussol. An elementary way to rigorously estimate convergence to equilibrium and escape rates. Journal of Computational Dynamics, 2015, 2 (1) : 51-64. doi: 10.3934/jcd.2015.2.51

 Impact Factor: 

Metrics

  • PDF downloads (19)
  • HTML views (40)
  • Cited by (0)

[Back to Top]