
Previous Article
An integrated inventory model with variable holding cost under two levels of tradecredit policy
 NACO Home
 This Issue

Next Article
New bounds for eigenvalues of strictly diagonally dominant tensors
An optimal control problem by parabolic equation with boundary smooth control and an integral constraint
Institute of Mathematics, Economics and Computer Science, Irkutsk State University, Irkutsk, Russia 
In the paper, we consider an optimal control problem by differential boundary condition of parabolic equation. We study this problem in the class of smooth controls satisfying certain integral constraints. For the problem under consideration we obtain a necessary optimality condition and propose a method for improving admissible controls. For illustration, we solve one numerical example to show the effectiveness of the proposed method.
References:
show all references
References:
[1] 
Vladimir Srochko, Vladimir Antonik, Elena Aksenyushkina. Sufficient optimality conditions for extremal controls based on functional increment formulas. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 191199. doi: 10.3934/naco.2017013 
[2] 
Sylvain Ervedoza, Enrique Zuazua. A systematic method for building smooth controls for smooth data. Discrete & Continuous Dynamical Systems  B, 2010, 14 (4) : 13751401. doi: 10.3934/dcdsb.2010.14.1375 
[3] 
R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems  A, 1998, 4 (3) : 497506. doi: 10.3934/dcds.1998.4.497 
[4] 
Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in nonsmooth periodic systems. Discrete & Continuous Dynamical Systems  A, 2007, 18 (2&3) : 355373. doi: 10.3934/dcds.2007.18.355 
[5] 
G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete & Continuous Dynamical Systems  B, 2002, 2 (2) : 279294. doi: 10.3934/dcdsb.2002.2.279 
[6] 
Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slowfast dynamics. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 116. doi: 10.3934/dcdsb.2018112 
[7] 
Karl Kunisch, Lijuan Wang. Bangbang property of time optimal controls of semilinear parabolic equation. Discrete & Continuous Dynamical Systems  A, 2016, 36 (1) : 279302. doi: 10.3934/dcds.2016.36.279 
[8] 
Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 4755. doi: 10.3934/jimo.2010.6.47 
[9] 
Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878900. doi: 10.3934/proc.2015.0878 
[10] 
Kerem Uǧurlu. Continuity of cost functional and optimal feedback controls for the stochastic Navier Stokes equation in 2D. Communications on Pure & Applied Analysis, 2017, 16 (1) : 189208. doi: 10.3934/cpaa.2017009 
[11] 
JongShenq Guo. Blowup behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems  A, 2007, 18 (1) : 7184. doi: 10.3934/dcds.2007.18.71 
[12] 
Alexandre Caboussat, Roland Glowinski. A Numerical Method for a NonSmooth AdvectionDiffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161178. doi: 10.3934/cpaa.2009.8.161 
[13] 
Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems  A, 2011, 29 (2) : 417437. doi: 10.3934/dcds.2011.29.417 
[14] 
Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems  A, 2011, 29 (2) : 559575. doi: 10.3934/dcds.2011.29.559 
[15] 
Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 145160. doi: 10.3934/naco.2013.3.145 
[16] 
Urszula Ledzewicz, Heinz Schättler. On the optimality of singular controls for a class of mathematical models for tumor antiangiogenesis. Discrete & Continuous Dynamical Systems  B, 2009, 11 (3) : 691715. doi: 10.3934/dcdsb.2009.11.691 
[17] 
Jiongmin Yong. Optimality conditions for controls of semilinear evolution systems with mixed constraints. Discrete & Continuous Dynamical Systems  A, 1995, 1 (3) : 371388. doi: 10.3934/dcds.1995.1.371 
[18] 
Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139151. doi: 10.3934/krm.2011.4.139 
[19] 
Roberto Camassa, PaoHsiung Chiu, Long Lee, W.H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 15031515. doi: 10.3934/cpaa.2011.10.1503 
[20] 
Jaemin Shin, Yongho Choi, Junseok Kim. An unconditionally stable numerical method for the viscous CahnHilliard equation. Discrete & Continuous Dynamical Systems  B, 2014, 19 (6) : 17371747. doi: 10.3934/dcdsb.2014.19.1737 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]