
Previous Article
Linearlygrowing reductions of Karp's 21 NPcomplete problems
 NACO Home
 This Issue

Next Article
Globalizer: A novel supercomputer software system for solving timeconsuming global optimization problems
Fouriersplitting method for solving hyperbolic LQR problems
1.  Institute of Mathematics, Eötvös Loránd University Budapest, MTAELTE Numerical Analysis and Large Networks Research Group, Pázmány Péter sétány 1/C, H1117 Budapest, Hungary 
2.  School of Mathematical Sciences and Information Technology, Yachay Tech, Hacienda San José y Proyecto Yachay, EC100650 Urcuquí, Ecuador 
3.  Department of Mathematics, University of Innsbruck, Technikerstrasse 13, A6020 Innsbruck, Austria 
We consider the numerical approximation to linear quadratic regulator problems for hyperbolic partial differential equations where the dynamics is driven by a strongly continuous semigroup. The optimal control is given in feedback form in terms of Riccati operator equations. The computational cost relies on solving the associated Riccati equation and computing the optimal state. In this paper we propose a novel approach based on operator splitting idea combined with Fourier's method to efficiently compute the optimal state. The Fourier's method allows to accurately approximate the exact flow making our approach computational efficient. Numerical experiments in one and two dimensions show the performance of the proposed method.
References:
[1] 
H. AbouKandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in Control and Systems Theory, Birkhäuser, Basel, Switzerland, 2003. 
[2] 
A. H. AlMohy and N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), 488511. 
[3] 
E. Arias, V. Hernández, J. Ibanes and J. Peinado, A family of BDF algorithms for solving differential matrix Riccati equations using adaptive techniques, Procedia Computer Science, 1 (2010), 25692577. 
[4] 
E. Armstrong, An extension of Bass' algorithm for stabilizing linear continuous constant systems, IEEE Trans. Automatic Control, AC20 (1975), 153154. 
[5] 
A. Balakrishnan, Applied Functional Analysis, SpringerVerlag, New York, 1981. 
[6] 
H. Banks, R. Smith and Y. Wang, The modeling of piezoceramic patch interactions with shells, plates and beams, Quart. Appl. Math., 53 (1995), 353381. 
[7] 
A. Bátkai, P. Csomós, B. Farkas and G. Nickel, Operator splitting for nonautonomous evolution equations, J. Funct. Anal., 260 (2011), 21632192. 
[8] 
A. Bátkai, P. Csomós and G. Nickel, Operator splittings and spatial approximations for evolution equations, J. Evol. Eqs., 9 (2009), 613636. 
[9] 
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, Birkhäuser, 1993. 
[10] 
P. Benner, P. Ezzatti, H. Mena, E. S. QuintanaOrtí and A. Remón, Solving matrix equations on multicore and manycore architectures, Algorithms, 6 (2013), 857870. 
[11] 
P. Benner and H. Mena, Numerical solution of the infinitedimensional LQRproblem and the associated differential Riccati equations, Journal of Numerical Mathematics (2016), in press. 
[12] 
P. Benner and H. Mena, Rosenbrock methods for solving differential Riccati equations, IEEE Transactions on Automatic Control, 58 (2013), 29502957. 
[13] 
P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey, GAMM Mitteilungen, 36 (2013), 3252. 
[14] 
P. Csomós and J. Winckler, A semigroup proof for the wellposedness of the linearised shallow water equations, J. Anal. Math., 43 (2017), 445459. 
[15] 
G. Da Prato, Direct solution of a Riccati equation arising in stochastic control theory, Appl. Math. Optim., 11 (1984), 191208. 
[16] 
G. Da Prato, P. Kunstmann, I. Lasiecka, A. Lunardi, R. Schnaubelt and L. Weis, Functional Analytic Methods for Evolution Equations, SpringerVerlag, Berlin, 2004. 
[17] 
K. Engel and R. Nagel, OneParameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, SpringerVerlag, New York, 2000. 
[18] 
F. Flandoli, Direct solution of a Riccati equation arising in a stochastic control problem with control and observation on the boundary, Appl. Math. Optim., 14 (1986), 107129. 
[19] 
C. Hafizoglu, I. Lasiecka, T. Levajković, H. Mena and A. Tuffaha, The stochastic linear quadratic problem with singular estimates, SIAM J. Control Optim., 55 (2017), 595626. 
[20] 
E. Hansen and A. Ostermann, Exponential splitting for unbounded operators, Math. Comput., 78 (2009), 14851496. 
[21] 
A. Ichikawa, Dynamic programming approach to stochastic evolution equation, SIAM J. Control. Optim., 17 (1979), 152174. 
[22] 
A. Ichikawa and H. Katayama, Remarks on the timevarying H_{∞} Riccati equations, Sys. Cont. Lett., 37 (1999), 335345. 
[23] 
O. Iftime and M. Opmeer, A representation of all bounded selfadjoint solutions of the algebraic Riccati equation for systems with an unbounded observation operator, Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, December 1407 (2004), 28652870. 
[24] 
K. Ito and F. Kappel, Evolution Equations and Approximations, World Scientific, Singapore, 2002. 
[25] 
T. Jahnke and Ch. Lubich, Error bounds for exponential operator splittings, BIT, 40 (2000), 735744. 
[26] 
D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Trans. Automatic Control, AC13 (1968), 114115. 
[27] 
A. Kofler, H. Mena and A. Ostermann, Splitting methods for stochastic partial differential equations, preprint 
[28] 
N. Lang, H. Mena and J. Saak, On the benefits of the LDL factorization for largescale differential matrix equation solvers, Linear Algebra and its Applications, 480 (2015), 4471. 
[29] 
I. Lasiecka, Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, in Functional Analytic Methods for Evolution Equations (eds. M. Iannelli, R. Nagel, S. Piazzera), Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1855 (2004), 313369. 
[30] 
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories Ⅱ. Abstract Hyperboliclike Systems over a Finite Time Horizon, Cambridge University Press, Cambridge, UK, 2000. 
[31] 
I. Lasiecka and A. Tuffaha, Riccati equations for the Bolza problem arising in boundary/point control problems governed by $ C_{0} $semigroups satisfying a singular estimate, J. Optim. Theory Appl., 136 (2008), 229246. 
[32] 
T. Levajković and H. Mena, On deterministic and stochastic linear quadratic control problem, in Current Trends in Analysis and Its Applications. Trends in Mathematics. (eds. V. Mityushev, M. Ruzhansky), Birkhäuser, Cham, (2015), 315322. 
[33] 
T. Levajković, H. Mena and A. Tuffaha, The stochastic linear quadratic control problem: A chaos expansion approach, Evolution Equations and Control Theory, 5 (2016), 105134. 
[34] 
T. Levajković, H. Mena and A. Tuffaha, A numerical approximation framework for the stochastic linear quadratic regulator problem on Hilbert spaces, Applied Mathematics and Optimization, 75 (2017), 499523. 
[35] 
V. Mehrmann, The Autonomous Linear Quadratic Control Problem, SpringerVerlag, Berlin, 1991. 
[36] 
J. Pedlosky, Geophysical Fluid Dynamics, SpringerVerlag, New York, 1987. 
[37] 
I. Petersen, V. Ugrinovskii and A. Savkin, Robust Control Design Using H^{∞} Methods, SpringerVerlag, London, 2000. 
show all references
References:
[1] 
H. AbouKandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in Control and Systems Theory, Birkhäuser, Basel, Switzerland, 2003. 
[2] 
A. H. AlMohy and N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), 488511. 
[3] 
E. Arias, V. Hernández, J. Ibanes and J. Peinado, A family of BDF algorithms for solving differential matrix Riccati equations using adaptive techniques, Procedia Computer Science, 1 (2010), 25692577. 
[4] 
E. Armstrong, An extension of Bass' algorithm for stabilizing linear continuous constant systems, IEEE Trans. Automatic Control, AC20 (1975), 153154. 
[5] 
A. Balakrishnan, Applied Functional Analysis, SpringerVerlag, New York, 1981. 
[6] 
H. Banks, R. Smith and Y. Wang, The modeling of piezoceramic patch interactions with shells, plates and beams, Quart. Appl. Math., 53 (1995), 353381. 
[7] 
A. Bátkai, P. Csomós, B. Farkas and G. Nickel, Operator splitting for nonautonomous evolution equations, J. Funct. Anal., 260 (2011), 21632192. 
[8] 
A. Bátkai, P. Csomós and G. Nickel, Operator splittings and spatial approximations for evolution equations, J. Evol. Eqs., 9 (2009), 613636. 
[9] 
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, Birkhäuser, 1993. 
[10] 
P. Benner, P. Ezzatti, H. Mena, E. S. QuintanaOrtí and A. Remón, Solving matrix equations on multicore and manycore architectures, Algorithms, 6 (2013), 857870. 
[11] 
P. Benner and H. Mena, Numerical solution of the infinitedimensional LQRproblem and the associated differential Riccati equations, Journal of Numerical Mathematics (2016), in press. 
[12] 
P. Benner and H. Mena, Rosenbrock methods for solving differential Riccati equations, IEEE Transactions on Automatic Control, 58 (2013), 29502957. 
[13] 
P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey, GAMM Mitteilungen, 36 (2013), 3252. 
[14] 
P. Csomós and J. Winckler, A semigroup proof for the wellposedness of the linearised shallow water equations, J. Anal. Math., 43 (2017), 445459. 
[15] 
G. Da Prato, Direct solution of a Riccati equation arising in stochastic control theory, Appl. Math. Optim., 11 (1984), 191208. 
[16] 
G. Da Prato, P. Kunstmann, I. Lasiecka, A. Lunardi, R. Schnaubelt and L. Weis, Functional Analytic Methods for Evolution Equations, SpringerVerlag, Berlin, 2004. 
[17] 
K. Engel and R. Nagel, OneParameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, SpringerVerlag, New York, 2000. 
[18] 
F. Flandoli, Direct solution of a Riccati equation arising in a stochastic control problem with control and observation on the boundary, Appl. Math. Optim., 14 (1986), 107129. 
[19] 
C. Hafizoglu, I. Lasiecka, T. Levajković, H. Mena and A. Tuffaha, The stochastic linear quadratic problem with singular estimates, SIAM J. Control Optim., 55 (2017), 595626. 
[20] 
E. Hansen and A. Ostermann, Exponential splitting for unbounded operators, Math. Comput., 78 (2009), 14851496. 
[21] 
A. Ichikawa, Dynamic programming approach to stochastic evolution equation, SIAM J. Control. Optim., 17 (1979), 152174. 
[22] 
A. Ichikawa and H. Katayama, Remarks on the timevarying H_{∞} Riccati equations, Sys. Cont. Lett., 37 (1999), 335345. 
[23] 
O. Iftime and M. Opmeer, A representation of all bounded selfadjoint solutions of the algebraic Riccati equation for systems with an unbounded observation operator, Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, December 1407 (2004), 28652870. 
[24] 
K. Ito and F. Kappel, Evolution Equations and Approximations, World Scientific, Singapore, 2002. 
[25] 
T. Jahnke and Ch. Lubich, Error bounds for exponential operator splittings, BIT, 40 (2000), 735744. 
[26] 
D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Trans. Automatic Control, AC13 (1968), 114115. 
[27] 
A. Kofler, H. Mena and A. Ostermann, Splitting methods for stochastic partial differential equations, preprint 
[28] 
N. Lang, H. Mena and J. Saak, On the benefits of the LDL factorization for largescale differential matrix equation solvers, Linear Algebra and its Applications, 480 (2015), 4471. 
[29] 
I. Lasiecka, Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, in Functional Analytic Methods for Evolution Equations (eds. M. Iannelli, R. Nagel, S. Piazzera), Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1855 (2004), 313369. 
[30] 
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories Ⅱ. Abstract Hyperboliclike Systems over a Finite Time Horizon, Cambridge University Press, Cambridge, UK, 2000. 
[31] 
I. Lasiecka and A. Tuffaha, Riccati equations for the Bolza problem arising in boundary/point control problems governed by $ C_{0} $semigroups satisfying a singular estimate, J. Optim. Theory Appl., 136 (2008), 229246. 
[32] 
T. Levajković and H. Mena, On deterministic and stochastic linear quadratic control problem, in Current Trends in Analysis and Its Applications. Trends in Mathematics. (eds. V. Mityushev, M. Ruzhansky), Birkhäuser, Cham, (2015), 315322. 
[33] 
T. Levajković, H. Mena and A. Tuffaha, The stochastic linear quadratic control problem: A chaos expansion approach, Evolution Equations and Control Theory, 5 (2016), 105134. 
[34] 
T. Levajković, H. Mena and A. Tuffaha, A numerical approximation framework for the stochastic linear quadratic regulator problem on Hilbert spaces, Applied Mathematics and Optimization, 75 (2017), 499523. 
[35] 
V. Mehrmann, The Autonomous Linear Quadratic Control Problem, SpringerVerlag, Berlin, 1991. 
[36] 
J. Pedlosky, Geophysical Fluid Dynamics, SpringerVerlag, New York, 1987. 
[37] 
I. Petersen, V. Ugrinovskii and A. Savkin, Robust Control Design Using H^{∞} Methods, SpringerVerlag, London, 2000. 
[1] 
Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 487510. doi: 10.3934/naco.2012.2.487 
[2] 
Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806815. doi: 10.3934/proc.2005.2005.806 
[3] 
Alexander Tyatyushkin, Tatiana Zarodnyuk. Numerical method for solving optimal control problems with phase constraints. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 481492. doi: 10.3934/naco.2017030 
[4] 
Lijian Jiang, Craig C. Douglas. Analysis of an operator splitting method in 4DVar. Conference Publications, 2009, 2009 (Special) : 394403. doi: 10.3934/proc.2009.2009.394 
[5] 
Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 10131026. doi: 10.3934/jimo.2011.7.1013 
[6] 
Matthias Gerdts, Stefan Horn, SvenJoachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial & Management Optimization, 2017, 13 (1) : 4762. doi: 10.3934/jimo.2016003 
[7] 
Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a nonlocal elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768778. doi: 10.3934/proc.2007.2007.768 
[8] 
Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasiperiodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems  B, 2010, 14 (1) : 4174. doi: 10.3934/dcdsb.2010.14.41 
[9] 
Hamid Reza Marzban, Hamid Reza Tabrizidooz. Solution of nonlinear delay optimal control problems using a composite pseudospectral collocation method. Communications on Pure & Applied Analysis, 2010, 9 (5) : 13791389. doi: 10.3934/cpaa.2010.9.1379 
[10] 
Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275309. doi: 10.3934/jimo.2014.10.275 
[11] 
Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasiperiodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems  B, 2010, 14 (1) : 75109. doi: 10.3934/dcdsb.2010.14.75 
[12] 
V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 5562. doi: 10.3934/jimo.2006.2.55 
[13] 
Karl Kunisch, Markus Müller. Uniform convergence of the POD method and applications to optimal control. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 44774501. doi: 10.3934/dcds.2015.35.4477 
[14] 
Yangang Chen, Justin W. L. Wan. Numerical method for image registration model based on optimal mass transport. Inverse Problems & Imaging, 2018, 12 (2) : 401432. doi: 10.3934/ipi.2018018 
[15] 
BenYu Guo, YuJian Jiao. Mixed generalized LaguerreFourier spectral method for exterior problem of NavierStokes equations. Discrete & Continuous Dynamical Systems  B, 2009, 11 (2) : 315345. doi: 10.3934/dcdsb.2009.11.315 
[16] 
Canghua Jiang, Kok Lay Teo, Ryan Loxton, GuangRen Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591609. doi: 10.3934/jimo.2012.8.591 
[17] 
YongKum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441458. doi: 10.3934/krm.2012.5.441 
[18] 
HeeDae Kwon, Jeehyun Lee, SungDae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems  B, 2010, 13 (2) : 305325. doi: 10.3934/dcdsb.2010.13.305 
[19] 
Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations & Control Theory, 2017, 6 (2) : 187217. doi: 10.3934/eect.2017011 
[20] 
Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 1996, 2 (4) : 497524. doi: 10.3934/dcds.1996.2.497 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]