March 2018, 8(1): 1-16. doi: 10.3934/naco.2018001

Linearly-growing reductions of Karp's 21 NP-complete problems

1. 

School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park, SA 5042, Australia

2. 

Defence Science and Technology Group, Canberra, ACT 2600, Australia

* Corresponding author: Michael Haythorpe: michael.haythorpe@flinders.edu.au

The reviewing process was handled by A. Baghirov

Received  September 2015 Revised  January 2018 Published  March 2018

We address the question of whether it may be worthwhile to convert certain, now classical, NP-complete problems to one of a smaller number of kernel NP-complete problems. In particular, we show that Karp's classical set of 21 NP-complete problems contains a kernel subset of six problems with the property that each problem in the larger set can be converted to one of these six problems with only linear growth in problem size. This finding has potential applications in optimisation theory because the kernel subset includes 0-1 integer programming, job sequencing and undirected Hamiltonian cycle problems.

Citation: Jerzy A. Filar, Michael Haythorpe, Richard Taylor. Linearly-growing reductions of Karp's 21 NP-complete problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 1-16. doi: 10.3934/naco.2018001
References:
[1]

S. Cook, The complexity of theorem proving procedures, Proceedings of the Third Annual ACM Symposium on Theory of Computing, (1971), 151-158.

[2]

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver, Combinatorial Optimization, Wiley, New York, 1998.

[3]

A. Johnson. Quasi-Linear Reduction of Hamiltonian Cycle Problem (HCP) to Satisfiability Problem (SAT), IP. com, Disclosure Number: IPCOM000237123D, 2014.

[4]

R. M. Karp, Reducibility Among Combinatorial Problems, Springer, New York, 1972.

[5]

C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

show all references

References:
[1]

S. Cook, The complexity of theorem proving procedures, Proceedings of the Third Annual ACM Symposium on Theory of Computing, (1971), 151-158.

[2]

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver, Combinatorial Optimization, Wiley, New York, 1998.

[3]

A. Johnson. Quasi-Linear Reduction of Hamiltonian Cycle Problem (HCP) to Satisfiability Problem (SAT), IP. com, Disclosure Number: IPCOM000237123D, 2014.

[4]

R. M. Karp, Reducibility Among Combinatorial Problems, Springer, New York, 1972.

[5]

C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

Figure 1.  A tree showing the 21 NP-complete problems identified by Karp, where the edges correspond to individual reductions
[1]

René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363

[2]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[3]

Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks & Heterogeneous Media, 2013, 8 (3) : 783-802. doi: 10.3934/nhm.2013.8.783

[4]

Elham Mardaneh, Ryan Loxton, Qun Lin, Phil Schmidli. A mixed-integer linear programming model for optimal vessel scheduling in offshore oil and gas operations. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1601-1623. doi: 10.3934/jimo.2017009

[5]

Jianqin Zhou, Wanquan Liu, Xifeng Wang. Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences. Advances in Mathematics of Communications, 2017, 11 (3) : 429-444. doi: 10.3934/amc.2017036

[6]

Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353

[7]

Zhenbo Wang, Shu-Cherng Fang, David Y. Gao, Wenxun Xing. Global extremal conditions for multi-integer quadratic programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 213-225. doi: 10.3934/jimo.2008.4.213

[8]

Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67

[9]

Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1027-1039. doi: 10.3934/jimo.2011.7.1027

[10]

Mohamed A. Tawhid, Ahmed F. Ali. A simplex grey wolf optimizer for solving integer programming and minimax problems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 301-323. doi: 10.3934/naco.2017020

[11]

Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[12]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[13]

Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 115-132. doi: 10.3934/naco.2014.4.115

[14]

Alina Ostafe, Igor E. Shparlinski, Arne Winterhof. On the generalized joint linear complexity profile of a class of nonlinear pseudorandom multisequences. Advances in Mathematics of Communications, 2010, 4 (3) : 369-379. doi: 10.3934/amc.2010.4.369

[15]

Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193

[16]

Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397

[17]

Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003

[18]

Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial & Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431

[19]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[20]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

 Impact Factor: 

Metrics

  • PDF downloads (91)
  • HTML views (242)
  • Cited by (0)

[Back to Top]