December 2017, 7(4): 481-492. doi: 10.3934/naco.2017030

Numerical method for solving optimal control problems with phase constraints

Matrosov Institute for System Dynamics and Control Theory SB RAS, Lermontov str., 134,664033, Russia

* Corresponding author: tz@icc.ru

The authors are supported by RFBR grant 17-07-00627

Received  February 2017 Revised  September 2017 Published  October 2017

Fund Project: This paper was prepared at the occasion of The 10th International Conference on Optimization: Techniques and Applications (ICOTA 2016), Ulaanbaatar, Mongolia, July 23-26,2016, with its Associate Editors of Numerical Algebra, Control and Optimization (NACO) being Prof. Dr. Zhiyou Wu, School of Mathematical Sciences, Chongqing Normal University, Chongqing, China, Prof. Dr. Changjun Yu, Department of Mathematics and Statistics, Curtin University, Perth, Australia, and Shanghai University, China, and Prof. Gerhard-Wilhelm Weber, Middle East Technical University, Ankara, Turkey

The main idea of the method consists in successive solving auxiliary problems, which minimizes a special constructed Lagrange function, subject to linearized phase constraints. The linearly constrained auxiliary problems are more simple than the original ones because linear constraints can be easily processed. We shall discuss different aspects connected with approximating control problems and using the program system for solving them. We shall then pay attention to optimal control problems with constraints on inertia of control functions. For illustrations, four control problems will be solved using the proposed software.

Citation: Alexander Tyatyushkin, Tatiana Zarodnyuk. Numerical method for solving optimal control problems with phase constraints. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 481-492. doi: 10.3934/naco.2017030
References:
[1]

A. BondarenkoD. Bortz and J. More, A collection of large-scale nonlineary constrained optimization test problems, Optimization Online, 20 (1998), 18-32.

[2]

Yu. G. Evtushenko, Methods for Solving Extreme Problems and Their Application in Optimization Systems, Moscow, Nauka, 1982. (In Russian)

[3]

R. Gabasov, F. M. Kirillova and A. I. Tyatyushkin, Constructive Methods of Optimization. P. 1: Linear Problems, Minsk, University, 1984.

[4]

P. Gill, W. Murray and M. Wright, Practical Optimization, Moscow, Mir, 1985.

[5]

A. Yu. Gornov, The Computational Technologies for Solving Optimal Control Problems, Nauka, Novosibirsk, 2009.

[6]

A. Yu. GornovA. I. Tyatyushkin and E. A. Finkelstein, Numerical methods for solving terminal optimal control problems, Computational Mathematics and Mathematical Physics, 56 (2016), 221-234. doi: 10.1134/S0965542516020093.

[7]

A. Yu. Gornov and T. S. Zarodnyuk, Tunneling algorithm for solving nonconvex optimal control problems, Optimization, Simulation, and Control, Springer Optimization and Its Applications, 76 (2013), 289-299.

[8]

A. Yu. GornovT. S. ZarodnyukT. I. MadzharaA. V. Daneyeva and I. A. Veyalko, A collection of test multiextremal optimal control problems, Optimization, Simulation, and Control, Springer Optimization and Its Applications, 76 (2013), 257-274.

[9]

V. I. Gurman, V. A. Baturin and I. V. Rasina, Approximate Methods of Optimal Control, Irkutsk, IGU Padlisher, 1983. (In Russian)

[10]

I. L. Junkins and I. D. Turner, Optimal continuous torque attitude maneuvers, Proc. AIAA/AAS Astrodynamics Conference, Palo Alto, Calif, 20 (1978), 78.

[11]

A. I. Tyatyushkin, A multimethod technique for solving optimal control problem, Optimization Letters, 7 (2012), 1335-1347. doi: 10.1007/s11590-011-0408-x.

[12]

A. I. Tyatyushkin and O. V. Morzhin, Constructive methods of control optimization in nonlinear systems, Automation and Remote Control, 70 (2009), 772-786. doi: 10.1134/S0005117909050063.

[13]

A. I. Tyatyushkin and O. V. Morzhin, On optimization of position control in attainability tube in a model problem, Journal of Computer and Systems Sciences International, 49 (2010), 740-749. doi: 10.1134/S1064230710050084.

[14]

A. I. Tyatyushkin and O. V. Morzhin, Numerical investigation of attainability sets of nonlinear controlled differential systems, Automation and Remote Control, 72 (2011), 1291-1300. doi: 10.1134/S0005117911060178.

[15]

Y. WangC. Yu and K. L. Teo, A new computational strategy for optimal control problem with a cost on changing control, Numerical Algebra, Control and Optimization, 6 (2013), 339-364. doi: 10.3934/naco.2016016.

[16]

A. I. ZholudevA. I. Tyatyushkin and N. M. Erinchek, Numerical methods for optimization of control systems, Izvestiya: Technical cybernetics, 4 (1989), 18-32.

show all references

References:
[1]

A. BondarenkoD. Bortz and J. More, A collection of large-scale nonlineary constrained optimization test problems, Optimization Online, 20 (1998), 18-32.

[2]

Yu. G. Evtushenko, Methods for Solving Extreme Problems and Their Application in Optimization Systems, Moscow, Nauka, 1982. (In Russian)

[3]

R. Gabasov, F. M. Kirillova and A. I. Tyatyushkin, Constructive Methods of Optimization. P. 1: Linear Problems, Minsk, University, 1984.

[4]

P. Gill, W. Murray and M. Wright, Practical Optimization, Moscow, Mir, 1985.

[5]

A. Yu. Gornov, The Computational Technologies for Solving Optimal Control Problems, Nauka, Novosibirsk, 2009.

[6]

A. Yu. GornovA. I. Tyatyushkin and E. A. Finkelstein, Numerical methods for solving terminal optimal control problems, Computational Mathematics and Mathematical Physics, 56 (2016), 221-234. doi: 10.1134/S0965542516020093.

[7]

A. Yu. Gornov and T. S. Zarodnyuk, Tunneling algorithm for solving nonconvex optimal control problems, Optimization, Simulation, and Control, Springer Optimization and Its Applications, 76 (2013), 289-299.

[8]

A. Yu. GornovT. S. ZarodnyukT. I. MadzharaA. V. Daneyeva and I. A. Veyalko, A collection of test multiextremal optimal control problems, Optimization, Simulation, and Control, Springer Optimization and Its Applications, 76 (2013), 257-274.

[9]

V. I. Gurman, V. A. Baturin and I. V. Rasina, Approximate Methods of Optimal Control, Irkutsk, IGU Padlisher, 1983. (In Russian)

[10]

I. L. Junkins and I. D. Turner, Optimal continuous torque attitude maneuvers, Proc. AIAA/AAS Astrodynamics Conference, Palo Alto, Calif, 20 (1978), 78.

[11]

A. I. Tyatyushkin, A multimethod technique for solving optimal control problem, Optimization Letters, 7 (2012), 1335-1347. doi: 10.1007/s11590-011-0408-x.

[12]

A. I. Tyatyushkin and O. V. Morzhin, Constructive methods of control optimization in nonlinear systems, Automation and Remote Control, 70 (2009), 772-786. doi: 10.1134/S0005117909050063.

[13]

A. I. Tyatyushkin and O. V. Morzhin, On optimization of position control in attainability tube in a model problem, Journal of Computer and Systems Sciences International, 49 (2010), 740-749. doi: 10.1134/S1064230710050084.

[14]

A. I. Tyatyushkin and O. V. Morzhin, Numerical investigation of attainability sets of nonlinear controlled differential systems, Automation and Remote Control, 72 (2011), 1291-1300. doi: 10.1134/S0005117911060178.

[15]

Y. WangC. Yu and K. L. Teo, A new computational strategy for optimal control problem with a cost on changing control, Numerical Algebra, Control and Optimization, 6 (2013), 339-364. doi: 10.3934/naco.2016016.

[16]

A. I. ZholudevA. I. Tyatyushkin and N. M. Erinchek, Numerical methods for optimization of control systems, Izvestiya: Technical cybernetics, 4 (1989), 18-32.

Figure 1.  The optimal control and trajectories for the problem 1
Figure 2.  The optimal control and trajectories for the problem 2
Figure 3.  The optimal control and trajectories for the problem 3
Figure 4.  The optimal control and trajectories for the problem 4
Table 1.  The results of solving test problem Non-inertial Robot Arm
Software $N = 10$ $N = 50$ $N = 100$ $N = 500$
LANCELOT-(0.1)-(16)-(140)-
MINOS9.278630 (0.2)9.145749 (3.5)9.141995 (110)9.141334 (305)
SNOPT9.278630 (2.30)9.145749 (64)-(10)-(315)
LOQO-(14)-(154)-(194)-
OPTCON9.278615 (20)9.147535 (37)9.152146 (87)9.148295 (309)
Software $N = 10$ $N = 50$ $N = 100$ $N = 500$
LANCELOT-(0.1)-(16)-(140)-
MINOS9.278630 (0.2)9.145749 (3.5)9.141995 (110)9.141334 (305)
SNOPT9.278630 (2.30)9.145749 (64)-(10)-(315)
LOQO-(14)-(154)-(194)-
OPTCON9.278615 (20)9.147535 (37)9.152146 (87)9.148295 (309)
[1]

Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems & Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791

[2]

Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501

[3]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

[4]

Benedetto Piccoli. Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Mathematical Control & Related Fields, 2012, 2 (4) : 383-398. doi: 10.3934/mcrf.2012.2.383

[5]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[6]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[7]

Biao Qu, Naihua Xiu. A relaxed extragradient-like method for a class of constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 645-654. doi: 10.3934/jimo.2007.3.645

[8]

Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775

[9]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[10]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

[11]

Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations & Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281

[12]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[13]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[14]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

[15]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[16]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[17]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[20]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]