• Previous Article
    A new Monte Carlo based procedure for complete ranking efficient units in DEA models
  • NACO Home
  • This Issue
  • Next Article
    An investigation of the most important factors for sustainable product development using evidential reasoning
December 2017, 7(4): 417-433. doi: 10.3934/naco.2017026

A robust multi-trip vehicle routing problem of perishable products with intermediate depots and time windows

1. 

Mazandaran University of Science and Technology, Department of Industrial Engineering, Babol, Iran

2. 

Department of Industrial Engineering, Yazd University, Yazd, Iran

3. 

Department of Industrial and System Engineering, Isfahan University of Technology, Isfahan, Iran

4. 

Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran

Received  October 2016 Revised  August 2017 Published  October 2017

Fund Project: This paper was prepared at the occasion of The 12th International Conference on Industrial Engineering (ICIE 2016), Tehran, Iran, January 25-26,2016, with its Associate Editors of Numerical Algebra, Control and Optimization (NACO) being Assoc. Prof. A. (Nima) Mirzazadeh, Kharazmi University, Tehran, Iran, and Prof. Gerhard-Wilhelm Weber, Middle East Technical University, Ankara, Turkey

Distribution of products within the supply chain with the highest quality is one of the most important competitive activities in industries with perishable products. Companies should pay much attention to the distribution during the design of their optimal supply chain. In this paper, a robust multi-trip vehicle routing problem with intermediate depots and time windows is formulated to deals with the uncertainty nature of demand parameter. A mixed integer linear programming model is presented to minimize total traveled distance, vehicles usage costs, earliness and tardiness penalty costs of services, and determine optimal routes for vehicles so that all customers' demands are covered. A number of random instances in different sizes (small, medium, and large) are generated and solved by CPLEX solver of GAMS to evaluate the robustness of the model and prove the model validation. Finally, a sensitivity analysis is applied to study the impact of the maximum available time for vehicles on the objective function value.

Citation: Erfan Babaee Tirkolaee, Alireza Goli, Mani Bakhsi, Iraj Mahdavi. A robust multi-trip vehicle routing problem of perishable products with intermediate depots and time windows. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 417-433. doi: 10.3934/naco.2017026
References:
[1]

B. Adenso-DíazM. González and E. Garcia, A hierarchical approach to managing dairy routing, Interfaces, 28 (1998), 21-31.

[2]

A. AgraM. ChristiansenR. FigueiredoL. M. HvattumM. Poss and C. Requejo, The robust vehicle routing problem with time windows, Computers & Operations Research, 40 (2013), 856-866. doi: 10.1016/j.cor.2012.10.002.

[3]

M. AlinaghianH. Amanipour and E. B. Tirkolaee, Enhancement of inventory management approaches in vehicle routing-cross docking problems, Journal of Supply Chain Management Systems, 3 (2014), 27-34.

[4]

A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust Optimization, Princeton University Press, 2009. doi: 10.1515/9781400831050.

[5]

D. Bertsimas and M. Sim, Robust discrete optimization and network flows, Mathematical programming, 98 (2003), 49-71. doi: 10.1007/s10107-003-0396-4.

[6]

D. Bertsimas and M. Sim, The price of robustness, Operations Research, 52 (2004), 35-53. doi: 10.1287/opre.1030.0065.

[7]

I. M. ChaoB. L. Golden and E. Wasil, A new heuristic for the multi-depot vehicle routing problem that improves upon best-known solutions, American Journal of Mathematical and Management Sciences, 13 (1993), 371-406.

[8]

B. CrevierJ. F. Cordeau and G. Laporte, The multi-depot vehicle routing problem with inter-depot routes, European Journal of Operational Research, 172 (2007), 756-773. doi: 10.1016/j.ejor.2005.08.015.

[9]

G. B. Dantzig and J. H. Ramser, The truck dispatching problem, Management Science, 6 (1959), 80-91. doi: 10.1287/mnsc.6.1.80.

[10]

B. Fleischmann, The vehicle routing problem with multiple use of the vehicles, Working paper, 1990.

[11]

F. P. GoksalI. Karaoglan and F. Altiparmak, A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery, Computers & Industrial Engineering, 65 (2013), 39-53.

[12]

C. E. GounarisW. Wiesemann and C. A. Floudas, The robust capacitated vehicle routing problem under demand uncertainty, Operations Research, 61 (2013), 677-693. doi: 10.1287/opre.1120.1136.

[13]

K. GovindanA. JafarianR. Khodaverdi and K. Devika, Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food, International Journal of Production Economics, 152 (2014), 9-28.

[14]

E. Hadjiconstantinou and R. Baldacci, A multi-depot period vehicle routing problem arising in the utilities sector, Journal of the Operational Research Society, 49 (1998), 1239-1248.

[15]

W. HoG. T. HoP. Ji and H. C. Lau, A hybrid genetic algorithm for the multi-depot vehicle routing problem, Engineering Applications of Artificial Intelligence, 21 (2008), 548-557.

[16]

C. I. HsuS. F. Hung and H. C. Li, Vehicle routing problem with time-windows for perishable food delivery, Journal of Food Engineering, 80 (2007), 465-475.

[17]

H. S. Hwang, A food distribution model for famine relief, Computers & Industrial Engineering, 37 (1999), 335-338.

[18]

I. KaraG. Laporte and T. Bektas, A note on the lifted Miller-Tucker-Zemlin subtour elimination constraints for the capacitated vehicle routing problem, European Journal of Operational Research, 158 (2004), 793-795. doi: 10.1016/S0377-2217(03)00377-1.

[19]

Z. LiR. Ding and C. A. Floudas, A comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization, Industrial & Engineering Chemistry Research, 50 (2011), 10567-10603.

[20]

S. H. MirmohammadiE. B. TirkolaeeA. Goli and S. Dehnavi-Arani, The periodic green vehicle routing problem with considering of time-dependent urban traffic and time windows, International Journal of Optimization in Civil Engineering, 7 (2017), 143-156.

[21]

J. R. Montoya-TorresJ. L. FrancoS. N. IsazaH. F. Jiménez and N. Herazo-Padilla, A literature review on the vehicle routing problem with multiple depots, Computers & Industrial Engineering, 79 (2015), 115-129.

[22]

A. Olivera and O. Viera, Adaptive memory programming for the vehicle routing problem with multiple trips, Computers & Operations Research, 34 (2007), 28-47. doi: 10.1016/j.cor.2005.02.044.

[23]

A. Osvald and L. Z. Stirn, A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food, Journal of Food Engineering, 85 (2008), 285-295.

[24]

N. PrindezisC. T. Kiranoudis and D. Marinos-Kouris, A business-to-business fleet management service provider for central food market enterprises, Journal of Food Engineering, 60 (2003), 203-210.

[25]

L. Sun and B. Wang, Robust optimisation approach for vehicle routing problems with uncertainty, Mathematical Problems in Engineering, 2015 (2015), 1-8. doi: 10.1155/2015/901583.

[26]

L. TansiniM. E. Urquhart and O. Viera, Comparing assignment algorithms for the multi-depot VRP, Reportes Técnicos, (2001), 01-08.

[27]

C. D. Tarantilis and C. T. Kiranoudis, A meta-heuristic algorithm for the efficient distribution of perishable foods, Journal of food Engineering, 50 (2001), 1-9.

[28]

E. B. Tirkolaee and A. Goli, Supply Chain Management Decisions: Location, Routing and Inventory Models and Optimization Methods, LAP Lambert Academic Publishing, 2016.

[29]

P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applications, Second Edition, Society for Industrial and Applied Mathematics, 2014. doi: 10.1137/1.9781611973594.

[30]

P. M. Verderame and C. A. Floudas, Multisite planning under demand and transportation time uncertainty: Robust optimization and conditional value-at-risk frameworks, Industrial & Engineering Chemistry Research, 50 (2010), 4959-4982.

[31]

T. VidalT. G. CrainicM. GendreauN. Lahrichi and W. Rei, A hybrid genetic algorithm for multi depot and periodic vehicle routing problems, Operations Research, 60 (2012), 611-624. doi: 10.1287/opre.1120.1048.

[32]

T. YaoS. Reddy Mandala and B. Do Chung, Evacuation transportation planning under uncertainty: a robust optimization approach, Networks and Spatial Economics, 9 (2009), 171-189. doi: 10.1007/s11067-009-9103-1.

show all references

References:
[1]

B. Adenso-DíazM. González and E. Garcia, A hierarchical approach to managing dairy routing, Interfaces, 28 (1998), 21-31.

[2]

A. AgraM. ChristiansenR. FigueiredoL. M. HvattumM. Poss and C. Requejo, The robust vehicle routing problem with time windows, Computers & Operations Research, 40 (2013), 856-866. doi: 10.1016/j.cor.2012.10.002.

[3]

M. AlinaghianH. Amanipour and E. B. Tirkolaee, Enhancement of inventory management approaches in vehicle routing-cross docking problems, Journal of Supply Chain Management Systems, 3 (2014), 27-34.

[4]

A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust Optimization, Princeton University Press, 2009. doi: 10.1515/9781400831050.

[5]

D. Bertsimas and M. Sim, Robust discrete optimization and network flows, Mathematical programming, 98 (2003), 49-71. doi: 10.1007/s10107-003-0396-4.

[6]

D. Bertsimas and M. Sim, The price of robustness, Operations Research, 52 (2004), 35-53. doi: 10.1287/opre.1030.0065.

[7]

I. M. ChaoB. L. Golden and E. Wasil, A new heuristic for the multi-depot vehicle routing problem that improves upon best-known solutions, American Journal of Mathematical and Management Sciences, 13 (1993), 371-406.

[8]

B. CrevierJ. F. Cordeau and G. Laporte, The multi-depot vehicle routing problem with inter-depot routes, European Journal of Operational Research, 172 (2007), 756-773. doi: 10.1016/j.ejor.2005.08.015.

[9]

G. B. Dantzig and J. H. Ramser, The truck dispatching problem, Management Science, 6 (1959), 80-91. doi: 10.1287/mnsc.6.1.80.

[10]

B. Fleischmann, The vehicle routing problem with multiple use of the vehicles, Working paper, 1990.

[11]

F. P. GoksalI. Karaoglan and F. Altiparmak, A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery, Computers & Industrial Engineering, 65 (2013), 39-53.

[12]

C. E. GounarisW. Wiesemann and C. A. Floudas, The robust capacitated vehicle routing problem under demand uncertainty, Operations Research, 61 (2013), 677-693. doi: 10.1287/opre.1120.1136.

[13]

K. GovindanA. JafarianR. Khodaverdi and K. Devika, Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food, International Journal of Production Economics, 152 (2014), 9-28.

[14]

E. Hadjiconstantinou and R. Baldacci, A multi-depot period vehicle routing problem arising in the utilities sector, Journal of the Operational Research Society, 49 (1998), 1239-1248.

[15]

W. HoG. T. HoP. Ji and H. C. Lau, A hybrid genetic algorithm for the multi-depot vehicle routing problem, Engineering Applications of Artificial Intelligence, 21 (2008), 548-557.

[16]

C. I. HsuS. F. Hung and H. C. Li, Vehicle routing problem with time-windows for perishable food delivery, Journal of Food Engineering, 80 (2007), 465-475.

[17]

H. S. Hwang, A food distribution model for famine relief, Computers & Industrial Engineering, 37 (1999), 335-338.

[18]

I. KaraG. Laporte and T. Bektas, A note on the lifted Miller-Tucker-Zemlin subtour elimination constraints for the capacitated vehicle routing problem, European Journal of Operational Research, 158 (2004), 793-795. doi: 10.1016/S0377-2217(03)00377-1.

[19]

Z. LiR. Ding and C. A. Floudas, A comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization, Industrial & Engineering Chemistry Research, 50 (2011), 10567-10603.

[20]

S. H. MirmohammadiE. B. TirkolaeeA. Goli and S. Dehnavi-Arani, The periodic green vehicle routing problem with considering of time-dependent urban traffic and time windows, International Journal of Optimization in Civil Engineering, 7 (2017), 143-156.

[21]

J. R. Montoya-TorresJ. L. FrancoS. N. IsazaH. F. Jiménez and N. Herazo-Padilla, A literature review on the vehicle routing problem with multiple depots, Computers & Industrial Engineering, 79 (2015), 115-129.

[22]

A. Olivera and O. Viera, Adaptive memory programming for the vehicle routing problem with multiple trips, Computers & Operations Research, 34 (2007), 28-47. doi: 10.1016/j.cor.2005.02.044.

[23]

A. Osvald and L. Z. Stirn, A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food, Journal of Food Engineering, 85 (2008), 285-295.

[24]

N. PrindezisC. T. Kiranoudis and D. Marinos-Kouris, A business-to-business fleet management service provider for central food market enterprises, Journal of Food Engineering, 60 (2003), 203-210.

[25]

L. Sun and B. Wang, Robust optimisation approach for vehicle routing problems with uncertainty, Mathematical Problems in Engineering, 2015 (2015), 1-8. doi: 10.1155/2015/901583.

[26]

L. TansiniM. E. Urquhart and O. Viera, Comparing assignment algorithms for the multi-depot VRP, Reportes Técnicos, (2001), 01-08.

[27]

C. D. Tarantilis and C. T. Kiranoudis, A meta-heuristic algorithm for the efficient distribution of perishable foods, Journal of food Engineering, 50 (2001), 1-9.

[28]

E. B. Tirkolaee and A. Goli, Supply Chain Management Decisions: Location, Routing and Inventory Models and Optimization Methods, LAP Lambert Academic Publishing, 2016.

[29]

P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applications, Second Edition, Society for Industrial and Applied Mathematics, 2014. doi: 10.1137/1.9781611973594.

[30]

P. M. Verderame and C. A. Floudas, Multisite planning under demand and transportation time uncertainty: Robust optimization and conditional value-at-risk frameworks, Industrial & Engineering Chemistry Research, 50 (2010), 4959-4982.

[31]

T. VidalT. G. CrainicM. GendreauN. Lahrichi and W. Rei, A hybrid genetic algorithm for multi depot and periodic vehicle routing problems, Operations Research, 60 (2012), 611-624. doi: 10.1287/opre.1120.1048.

[32]

T. YaoS. Reddy Mandala and B. Do Chung, Evacuation transportation planning under uncertainty: a robust optimization approach, Networks and Spatial Economics, 9 (2009), 171-189. doi: 10.1007/s11067-009-9103-1.

Figure 1.  The scheme of the supply chain of the problem
Figure 2.  CPU time comparison of the BBO and CPLEX
Figure 3.  Sensitive analysis for $T_{max}$ parameter
Table 1.  Indices and sets
$NC=\{1, 2, \dots, nc\}$Set of customers
$ND=\{1, 2, \dots, \ nk\}$Set of intermediate depots
$NT=\{1, 2, \dots, nt\}$Set of customers and intermediate depots
$NV=\{1, 2, \dots, nv\}$Set of vehicles
$NP=\{1, 2, \dots, np\}$Set of trips
$i, \ j, \ k, \ l$Indices of network nodes
$v$Index of vehicles
$p$Index of trips
$S$An optional subset of customers
$M$A Large number
$NC=\{1, 2, \dots, nc\}$Set of customers
$ND=\{1, 2, \dots, \ nk\}$Set of intermediate depots
$NT=\{1, 2, \dots, nt\}$Set of customers and intermediate depots
$NV=\{1, 2, \dots, nv\}$Set of vehicles
$NP=\{1, 2, \dots, np\}$Set of trips
$i, \ j, \ k, \ l$Indices of network nodes
$v$Index of vehicles
$p$Index of trips
$S$An optional subset of customers
$M$A Large number
Table 2.  Parameters of problems
$t_{ij}$Traveling time from customer $i$ to customer $j$
${QG}_k$Quantity of product at intermediate depot $k$
${VC}_{v\ }$Capacity of vehicle $k$
${DE}_j$Forecasted demand of customer $j$
$\widetilde{{DE}_j}$Non-deterministic demand of customer $j$ that belongs to the interval ${ [{DE}_j-\widehat{{DE}_j}, {DE}_j+\widehat{{DE}_j}]}$
$d_{ij}$Distance between customer $i$ and customer $j$
${DI}_V$Maximum distance range of vehicle $v$
$Pe$Penalty cost of earliness in servicing customers
$Pl$Penalty cost of tardiness in servicing customers
${CV}_v$Usage cost of vehicle $v$
$e_{i}$Lower bound of initial interval to service customer $i$
$l_{i}$Upper bound of initial interval to service customer $i$
${ee}_{i}$Lower bound of secondary interval to service customer $i$
${ll}_{i}$Upper bound of secondary interval to service customer $i$
$T_{\max}$Maximum time of vehicle usage
$ul$Unit loading time of vehicles in nodes with demand
$uu$Unit unloading time of vehicles in unloading platform
$t_{ij}$Traveling time from customer $i$ to customer $j$
${QG}_k$Quantity of product at intermediate depot $k$
${VC}_{v\ }$Capacity of vehicle $k$
${DE}_j$Forecasted demand of customer $j$
$\widetilde{{DE}_j}$Non-deterministic demand of customer $j$ that belongs to the interval ${ [{DE}_j-\widehat{{DE}_j}, {DE}_j+\widehat{{DE}_j}]}$
$d_{ij}$Distance between customer $i$ and customer $j$
${DI}_V$Maximum distance range of vehicle $v$
$Pe$Penalty cost of earliness in servicing customers
$Pl$Penalty cost of tardiness in servicing customers
${CV}_v$Usage cost of vehicle $v$
$e_{i}$Lower bound of initial interval to service customer $i$
$l_{i}$Upper bound of initial interval to service customer $i$
${ee}_{i}$Lower bound of secondary interval to service customer $i$
${ll}_{i}$Upper bound of secondary interval to service customer $i$
$T_{\max}$Maximum time of vehicle usage
$ul$Unit loading time of vehicles in nodes with demand
$uu$Unit unloading time of vehicles in unloading platform
Table 3.  Non-decision variables
${{tt}_i}^p$Presence time of vehicles at intermediate depot $i$ or customer node $i$ in trip $p$
${tt}_{i}$Presence time of vehicles at intermediate depot $i$ or customer $i$
${{dd}_i}^p$Distance traveled by vehicle in customer $i$ in trip $p$
${{sd}_i}^p$Distance traveled by vehicle in customer $i$ in trip $p$ or initial distance traveled by vehicle in trip $p$ and intermediate depot $i$
${{ddd}_j}^v$Distance traveled by each vehicle when arriving at intermediate depot $i$
${LT}^p_v$Total loading time of vehicle $v$ in trip $p$
${UT}^p_v$Total unloading time of vehicle $v$ in trip $p$
$\alpha$Factor for converting total traveled distance to total transportation cost
${{tt}_i}^p$Presence time of vehicles at intermediate depot $i$ or customer node $i$ in trip $p$
${tt}_{i}$Presence time of vehicles at intermediate depot $i$ or customer $i$
${{dd}_i}^p$Distance traveled by vehicle in customer $i$ in trip $p$
${{sd}_i}^p$Distance traveled by vehicle in customer $i$ in trip $p$ or initial distance traveled by vehicle in trip $p$ and intermediate depot $i$
${{ddd}_j}^v$Distance traveled by each vehicle when arriving at intermediate depot $i$
${LT}^p_v$Total loading time of vehicle $v$ in trip $p$
${UT}^p_v$Total unloading time of vehicle $v$ in trip $p$
$\alpha$Factor for converting total traveled distance to total transportation cost
Table 4.  Decision variables
$x_{ij}^{vp}$Equals to 1, if vehicle $v$ traverses node $i$ to node $j$ in trip $p$; 0, otherwise.
$y_{j vk}$Equals to 1, if the demand of node $j$ is satisfied by intermediate depot $k$ and vehicle $v$; 0, otherwise.
$F_{vk}$Equals to 1, if vehicle $v$ is used in intermediate depot $k$; 0, otherwise.
${YE}_i$Earliness in order to service customer $i$
${YL}_i$Tardiness in order to service customer $i$
$x_{ij}^{vp}$Equals to 1, if vehicle $v$ traverses node $i$ to node $j$ in trip $p$; 0, otherwise.
$y_{j vk}$Equals to 1, if the demand of node $j$ is satisfied by intermediate depot $k$ and vehicle $v$; 0, otherwise.
$F_{vk}$Equals to 1, if vehicle $v$ is used in intermediate depot $k$; 0, otherwise.
${YE}_i$Earliness in order to service customer $i$
${YL}_i$Tardiness in order to service customer $i$
Table 5.  Solution details of the instance problem
Vehicle 1 in intermediate depot 1Intermediate depot 1 -customer 1 -customer 2 -Intermediate depot 2 -customer 3 -customer 4 -Intermediate depot 1 -customer 10 -customer 9 -customer 8 -Intermediate depot 1
Vehicle 2 in intermediate depot 2Intermediate depot 2 -customer 5 -customer 6 -customer 7 -Intermediate depot 2
Vehicle 1 in intermediate depot 1Intermediate depot 1 -customer 1 -customer 2 -Intermediate depot 2 -customer 3 -customer 4 -Intermediate depot 1 -customer 10 -customer 9 -customer 8 -Intermediate depot 1
Vehicle 2 in intermediate depot 2Intermediate depot 2 -customer 5 -customer 6 -customer 7 -Intermediate depot 2
Table 6.  Solution details of the instance problem
Problem $n$DepotCustomersTypes of Vehicles
P15322
P27342
P39453
P410463
P513584
P614594
P7155105
P8206115
P9308227
P1040103010
Problem $n$DepotCustomersTypes of Vehicles
P15322
P27342
P39453
P410463
P513584
P614594
P7155105
P8206115
P9308227
P1040103010
Table 7.  Calculation of robust parameters
$\Gamma _{k} $ $\Gamma _{vp} $ $\rho$
$\left\lceil C^{\prime} /K^{\prime} \right\rceil $ $\left\lceil V^{\prime} /P^{\prime} \right\rceil $(0.4, 0.8, 1)
$\Gamma _{k} $ $\Gamma _{vp} $ $\rho$
$\left\lceil C^{\prime} /K^{\prime} \right\rceil $ $\left\lceil V^{\prime} /P^{\prime} \right\rceil $(0.4, 0.8, 1)
Table 8.  Calculation of robust parameters
Problem$\rho$Objective valueCPU Time (Sec)
DPRPDPRP
10.46032.26853.8590.22.25
$(\Gamma _{k} =1)$0.88118.738
$(\Gamma _{vp} =1)$18444.959
20.412046.213928.066.799.66
$(\Gamma _{k} =2)$0.817417.6
$(\Gamma _{vp} =1)$119273.68
30.424074.628076.63198.73308.06
$(\Gamma _{k} =2)$0.833606.15
$(\Gamma _{vp} =1)$136593.37
40.412055.313938.58902.31102.64
$(\Gamma _{k} =2)$0.815974.48
$(\Gamma _{vp} =1)$117108.88
50.412071.413883.441449.011649.68
$(\Gamma _{k} =2)$0.816050.13
$(\Gamma _{vp} =2)$117182.43
60.412079.814016.311853.142309.01
$(\Gamma _{k} =2)$0.816143.44
$(\Gamma _{vp} =2)$117272.91
70.412761.115026.22520.082590.18
$(\Gamma _{k} =2)$0.818273.9
$(\Gamma _{vp} =2)$119473.44
80.417952.6121548.523801.84106.63
$(\Gamma _{k} =2)$0.826857.1
$(\Gamma _{vp} =2)$127496.22
90.423721.429184.445682.126612.09
$(\Gamma _{k} =3)$0.835858.69
$(\Gamma _{vp} =3)$137241.65
100.430816.936681.3610841.1512394.88
$(\Gamma _{k} =4)$0.845953.11
$(\Gamma _{vp} =4)$151462.99
Problem$\rho$Objective valueCPU Time (Sec)
DPRPDPRP
10.46032.26853.8590.22.25
$(\Gamma _{k} =1)$0.88118.738
$(\Gamma _{vp} =1)$18444.959
20.412046.213928.066.799.66
$(\Gamma _{k} =2)$0.817417.6
$(\Gamma _{vp} =1)$119273.68
30.424074.628076.63198.73308.06
$(\Gamma _{k} =2)$0.833606.15
$(\Gamma _{vp} =1)$136593.37
40.412055.313938.58902.31102.64
$(\Gamma _{k} =2)$0.815974.48
$(\Gamma _{vp} =1)$117108.88
50.412071.413883.441449.011649.68
$(\Gamma _{k} =2)$0.816050.13
$(\Gamma _{vp} =2)$117182.43
60.412079.814016.311853.142309.01
$(\Gamma _{k} =2)$0.816143.44
$(\Gamma _{vp} =2)$117272.91
70.412761.115026.22520.082590.18
$(\Gamma _{k} =2)$0.818273.9
$(\Gamma _{vp} =2)$119473.44
80.417952.6121548.523801.84106.63
$(\Gamma _{k} =2)$0.826857.1
$(\Gamma _{vp} =2)$127496.22
90.423721.429184.445682.126612.09
$(\Gamma _{k} =3)$0.835858.69
$(\Gamma _{vp} =3)$137241.65
100.430816.936681.3610841.1512394.88
$(\Gamma _{k} =4)$0.845953.11
$(\Gamma _{vp} =4)$151462.99
Table 9.  Sensitivity analysis of $T_{max}$ parameter
P3Objective value for different $T_{max}$ values
360480550600
DP24461.3924074.623517.3523517.35
RP ($\rho$=0.4)28363.8528076.6328076.6328076.63
RP ($\rho$=0.8)34017.1533606.1533109.9933109.99
RP ($\rho$=1)37076.5536593.3733857.533857.5
AVE30979.73530587.687529640.367529640.3675
P3Objective value for different $T_{max}$ values
360480550600
DP24461.3924074.623517.3523517.35
RP ($\rho$=0.4)28363.8528076.6328076.6328076.63
RP ($\rho$=0.8)34017.1533606.1533109.9933109.99
RP ($\rho$=1)37076.5536593.3733857.533857.5
AVE30979.73530587.687529640.367529640.3675
[1]

Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial & Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843

[2]

Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861

[3]

Yaw Chang, Lin Chen. Solve the vehicle routing problem with time windows via a genetic algorithm. Conference Publications, 2007, 2007 (Special) : 240-249. doi: 10.3934/proc.2007.2007.240

[4]

Xiao Lan Zhu, Zhi Guo Feng, Jian Wen Peng. Robust design of sensor fusion problem in discrete time. Journal of Industrial & Management Optimization, 2017, 13 (2) : 825-834. doi: 10.3934/jimo.2016048

[5]

Ming-Yong Lai, Chang-Shi Liu, Xiao-Jiao Tong. A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows. Journal of Industrial & Management Optimization, 2010, 6 (2) : 435-451. doi: 10.3934/jimo.2010.6.435

[6]

Bin Dan, Huali Gao, Yang Zhang, Ru Liu, Songxuan Ma. Integrated order acceptance and scheduling decision making in product service supply chain with hard time windows constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 165-182. doi: 10.3934/jimo.2017041

[7]

Marcello D'Abbicco, Ruy Coimbra Charão, Cleverson Roberto da Luz. Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2419-2447. doi: 10.3934/dcds.2016.36.2419

[8]

Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051

[9]

Lingshuang Kong, Changjun Yu, Kok Lay Teo, Chunhua Yang. Robust real-time optimization for blending operation of alumina production. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1149-1167. doi: 10.3934/jimo.2016066

[10]

Shiri Artstein-Avidan, Dan Florentin, Vitali Milman. Order isomorphisms in windows. Electronic Research Announcements, 2011, 18: 112-118. doi: 10.3934/era.2011.18.112

[11]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[12]

Jean-Pierre Francoise, Claude Piquet. Global recurrences of multi-time scaled systems. Conference Publications, 2011, 2011 (Special) : 430-436. doi: 10.3934/proc.2011.2011.430

[13]

Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial & Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047

[14]

Bing Li, Tuomas Sahlsten, Tony Samuel. Intermediate $\beta$-shifts of finite type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 323-344. doi: 10.3934/dcds.2016.36.323

[15]

Stéphanie Portet, Julien Arino. An in vivo intermediate filament assembly model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 117-134. doi: 10.3934/mbe.2009.6.117

[16]

O. Guès, G. Métivier, M. Williams, K. Zumbrun. Boundary layer and long time stability for multi-D viscous shocks. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 131-160. doi: 10.3934/dcds.2004.11.131

[17]

Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks & Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329

[18]

Dandan Hu, Zhi-Wei Liu. Location and capacity design of congested intermediate facilities in networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 449-470. doi: 10.3934/jimo.2016.12.449

[19]

Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219

[20]

Gunter M. Ziegler. Projected products of polygons. Electronic Research Announcements, 2004, 10: 122-134.

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]