• Previous Article
    Performance evaluation of four-stage blood supply chain with feedback variables using NDEA cross-efficiency and entropy measures under IER uncertainty
  • NACO Home
  • This Issue
  • Next Article
    A robust multi-trip vehicle routing problem of perishable products with intermediate depots and time windows
December 2017, 7(4): 403-416. doi: 10.3934/naco.2017025

A new Monte Carlo based procedure for complete ranking efficient units in DEA models

1. 

Department of Mathematics, Kharazmi University, Tehran, Iran

2. 

Department of Econometrics, University of Economics, Prague, Prague, Czech Republic

* Corresponding author: jablon@vse.cz

Received  February 2017 Revised  July 2017 Published  October 2017

Fund Project: This paper was prepared at the occasion of The 12th International Conference on Industrial Engineering (ICIE 2016), Tehran, Iran, January 25-26,2016, with its Associate Editors of Numerical Algebra, Control and Optimization (NACO) being Assoc. Prof. A. (Nima) Mirzazadeh, Kharazmi University, Tehran, Iran, and Prof. Gerhard-Wilhelm Weber, Middle East Technical University, Ankara, Turkey

Traditional data envelopment analysis (DEA) models split DMUs into two classes – namely efficient and inefficient. Due to the identical maximum efficiency scores of the efficient units, they cannot be ranked directly. That is why various models allowing the complete ranking of DMUs have been proposed in the past. Those models are based on different principles and have various advantages and disadvantages (infeasibility, alternative optimum, computational aspects, etc.). The method proposed in this paper uses the magnitude of the area under the efficient curve. In order to estimate this magnitude we suggest to use Monte Carlo simulation for the complete ranking originally efficient DMUs so as to overcome the problems arisen from other ranking methods and it is very simple, computationally. This method generates random weights for the inputs and outputs in the feasible region and finally derives probability the DMUs are efficient. The procedure proposed is illustrated by a numerical example and its results are compared with three of most important and popular methods for ranking efficient units (i.e. cross-efficiency evaluation, Andersen and Petersen super-efficiency model, and common set of weights method).

Citation: Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025
References:
[1]

P. Andersen and N. C. Petersen, A procedure for ranking efficient units in data envelopment analysis, Management Science, 39 (1993), 1261-1264.

[2]

R. D. BankerA. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Management Science, 30 (1984), 1078-1092.

[3]

M. Carrillo and J. M. Jorge, A multiobjective DEA approach to ranking alternatives, Expert Systems with Applications, 50 (2016), 130-139.

[4]

A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444. doi: 10.1016/0377-2217(78)90138-8.

[5]

Y. Chen, Ranking efficient units in DEA, Omega, 32 (2004), 213-217.

[6]

Y. ChenJ. Du and J. Huo, Super-efficiency based on a modified directional distance function, Omega, 41 (2013), 621-625.

[7]

Y. ChenH. Morita and J. Zhu, Context-dependent DEA with an application to Tokyo public libraries, International Journal of Information Technology & Decision Making, 4 (2005), 385-394.

[8]

Y. Chen and L. Liang, Super-efficiency DEA in the presence of infeasibility: One model approach, European Journal of Operational Research, 212 (2011), 141-147. doi: 10.1016/j.ejor.2011.01.022.

[9]

W. D. CookY. Roll and A. Kazakov, A DEA model for measuring the relative efficiency of highway maintenance patrols, INFOR: Information Systems and Operational Research, 28 (1990), 113-124.

[10]

R. H. GreenJ. R. Doyle and W. D. Cook, Preference voting and project ranking using DEA and cross-evaluation, European Journal of Operational Research, 90 (1996), 461-472.

[11]

F. Hosseinzadeh LotfiA. A. NooraG. R. Jahanshahloo and M. Reshadi, One DEA ranking method based on applying aggregate units, Expert Systems with Applications, 38 (2011), 13468-13471.

[12]

M. Izadikhah and R. Farzipoor Saen, A new data envelopment analysis method for ranking decision making units: an application in industrial parks, Expert Systems, 32 (2015), 596-608.

[13]

J. Jablonsky, Multicriteria approaches for ranking of efficient units in DEA models, Central European Journal of Operations Research, 20 (2012), 435-449. doi: 10.1007/s10100-011-0223-6.

[14]

G. R. JahanshahlooF. Hosseinzadeh LotfiH. Zhiani Rezai and F. Rezai Balf, Using Monte Carlo method for ranking efficient DMUs, Applied Mathematics and Computation, 162 (2005), 371-379. doi: 10.1016/j.amc.2003.12.139.

[15]

G. R. JahanshahlooA. MemarianiF. H. Lotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common set of weights, Applied Mathematics and Computation, 166 (2005), 265-281. doi: 10.1016/j.amc.2004.04.088.

[16]

G. R. JahanshahlooH. V. JuniorF. H. Lotfi and D. Akbarian, A new DEA ranking system based on changing the reference set, European Journal of Operational Research, 181 (2007), 331-337.

[17]

Y. LiJ. XieM. Wang and L. Liang, Super efficiency evaluation using a common platform on a cooperative game, European Journal of Operational Research, 255 (2016), 884-892. doi: 10.1016/j.ejor.2016.06.001.

[18]

S. Lim, Minimax and maximin formulations of cross-efficiency in DEA, Computers & Industrial Engineering, 62 (2012), 726-731.

[19]

S. LimK. W. Oh and J. Zhu, Use of DEA cross-efficiency evaluation in portfolio selection: An application to Korean stock market, European Journal of Operational Research, 236 (2014), 361-368. doi: 10.1016/j.ejor.2013.12.002.

[20]

F. H. Liu and H. Hsuan Peng, Ranking of units on the DEA frontier with common weights, Computers & Operations Research, 35 (2008), 1624-1637.

[21]

W.-M. Lu and S.-F. Lo, An interactive benchmark model ranking performers -Application to financial holding companies, Mathematical and Computer Modelling, 49 (2009), 172-179. doi: 10.1016/j.mcm.2008.06.008.

[22]

M. OralO. Kettani and P. Lang, A methodology for collective evaluation and selection of industrial R & D projects, Management Science, 37 (1991), 871-885.

[23]

A. Oukil and G. R. Amin, Maximum appreciative cross-efficiency in DEA: A new ranking method, Computers & Industrial Engineering, 81 (2015), 14-21.

[24]

C. ParkanJ. WangD. Wu and G. Wei, Data envelopment analysis based on maximin relative efficiency criterion, Computers & Operations Research, 39 (2012), 2478-2487. doi: 10.1016/j.cor.2011.12.015.

[25]

V. V. Podinovski, DEA models for the explicit maximisation of relative efficiency, European Journal of Operational Research, 131 (2001), 572-586. doi: 10.1016/S0377-2217(00)00099-0.

[26]

V. V. Podinovski and A. D. Athanassopoulos, Assessing the relative efficiency of decision making units using DEA models with weight restrictions, Journal of the Operational Research Society, 49 (1998), 500. doi: 10.1016/j.ejor.2016.04.035.

[27]

S. Ramezani-TarkhoraniM. KhodabakhshiS. Mehrabian and F. Nuri-Bahmani, Ranking decision-making units using common weights in DEA, Applied Mathematical Modelling, 38 (2014), 3890-3890. doi: 10.1016/j.apm.2013.08.029.

[28]

J. L. Ruiz and I. Sirvent, On the DEA total weight flexibility and the aggregation in cross-efficiency evaluations, European Journal of Operational Research, 223 (2012), 732-738. doi: 10.1016/j.ejor.2012.06.011.

[29]

S. J. SadjadiH. OmraniS. AbdollahzadehM. Alinaghian and H. Mohammadi, A robust super-efficiency data envelopment analysis model for ranking of provincial gas companies in Iran, Expert Systems with Applications, 38 (2011), 10875-10881.

[30]

L. M. Seiford and J. Zhu, Context-dependent data envelopment analysis -Measuring attractiveness and progress, Omega, 31 (2003), 397-408.

[31]

T. R. SextonR. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions, New Directions for Evaluation, (1986), 73-105.

[32]

M. Soltanifar and F. Hosseinzadeh Lotfi, The voting analytic hierarchy process method for discriminating among efficient decision making units in data envelopment analysis, Computers & Industrial Engineering, 60 (2011), 585-592.

[33]

J. SunJ. Wu and D. Guo, Performance ranking of units considering ideal and anti-ideal DMU with common weights, Applied Mathematical Modelling, 37 (2013), 6301-6310. doi: 10.1016/j.apm.2013.01.010.

[34]

R. M. Thrall, Duality, classification and slacks in DEA, Annals of Operations Research, 66 (1996), 109-138. doi: 10.1007/BF02187297.

[35]

K. Tone, A slacks-based measure of super-efficiency in data envelopment analysis, European Journal of Operational Research, 143 (2002), 32-41. doi: 10.1016/S0377-2217(01)00324-1.

[36]

Y. M. WangK. S. Chin and J. B. Yang, Measuring the performances of decision-making units using geometric average efficiency, Journal of the Operational Research Society, 58 (2007), 929-937. doi: 10.1016/j.cam.2005.12.025.

[37]

Y.-M. Wang and K.-S. Chin, Some alternative models for DEA cross-efficiency evaluation, International Journal of Production Economics, 128 (2010), 332-338.

[38]

Y.-M. Wang and P. Jiang, Alternative mixed integer linear programming models for identifying the most efficient decision making unit in data envelopment analysis, Computers & Industrial Engineering, 62 (2012), 546-553.

[39]

M. Wang and Y. Li, Supplier evaluation based on Nash bargaining game model, Expert Systems with Applications, 41 (2014), 4181-4185.

[40]

J. WuL. LiangF. Yang and H. Yan, Bargaining game model in the evaluation of decision making units, Expert Systems with Applications, 36 (2009), 4357-4362.

[41]

J. WuJ. ChuQ. ZhuP. Yin and L. Liang, DEA cross-efficiency evaluation based on satisfaction degree: an application to technology selection, International Journal of Production Research, 54 (2016), 5990-6007.

[42]

J. WuJ. ChuQ. ZhuP. Yin and L. Liang, Extended secondary goal models for weights selection in DEA cross-efficiency evaluation, Computers & Industrial Engineering, 93 (2016), 143-151.

[43]

M. Zerafat AngizA. Mustafa and M. J. Kamali, Cross-ranking of decision making units in data envelopment analysis, Applied Mathematical Modelling, 37 (2013), 398-405. doi: 10.1016/j.apm.2012.02.038.

show all references

References:
[1]

P. Andersen and N. C. Petersen, A procedure for ranking efficient units in data envelopment analysis, Management Science, 39 (1993), 1261-1264.

[2]

R. D. BankerA. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Management Science, 30 (1984), 1078-1092.

[3]

M. Carrillo and J. M. Jorge, A multiobjective DEA approach to ranking alternatives, Expert Systems with Applications, 50 (2016), 130-139.

[4]

A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444. doi: 10.1016/0377-2217(78)90138-8.

[5]

Y. Chen, Ranking efficient units in DEA, Omega, 32 (2004), 213-217.

[6]

Y. ChenJ. Du and J. Huo, Super-efficiency based on a modified directional distance function, Omega, 41 (2013), 621-625.

[7]

Y. ChenH. Morita and J. Zhu, Context-dependent DEA with an application to Tokyo public libraries, International Journal of Information Technology & Decision Making, 4 (2005), 385-394.

[8]

Y. Chen and L. Liang, Super-efficiency DEA in the presence of infeasibility: One model approach, European Journal of Operational Research, 212 (2011), 141-147. doi: 10.1016/j.ejor.2011.01.022.

[9]

W. D. CookY. Roll and A. Kazakov, A DEA model for measuring the relative efficiency of highway maintenance patrols, INFOR: Information Systems and Operational Research, 28 (1990), 113-124.

[10]

R. H. GreenJ. R. Doyle and W. D. Cook, Preference voting and project ranking using DEA and cross-evaluation, European Journal of Operational Research, 90 (1996), 461-472.

[11]

F. Hosseinzadeh LotfiA. A. NooraG. R. Jahanshahloo and M. Reshadi, One DEA ranking method based on applying aggregate units, Expert Systems with Applications, 38 (2011), 13468-13471.

[12]

M. Izadikhah and R. Farzipoor Saen, A new data envelopment analysis method for ranking decision making units: an application in industrial parks, Expert Systems, 32 (2015), 596-608.

[13]

J. Jablonsky, Multicriteria approaches for ranking of efficient units in DEA models, Central European Journal of Operations Research, 20 (2012), 435-449. doi: 10.1007/s10100-011-0223-6.

[14]

G. R. JahanshahlooF. Hosseinzadeh LotfiH. Zhiani Rezai and F. Rezai Balf, Using Monte Carlo method for ranking efficient DMUs, Applied Mathematics and Computation, 162 (2005), 371-379. doi: 10.1016/j.amc.2003.12.139.

[15]

G. R. JahanshahlooA. MemarianiF. H. Lotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common set of weights, Applied Mathematics and Computation, 166 (2005), 265-281. doi: 10.1016/j.amc.2004.04.088.

[16]

G. R. JahanshahlooH. V. JuniorF. H. Lotfi and D. Akbarian, A new DEA ranking system based on changing the reference set, European Journal of Operational Research, 181 (2007), 331-337.

[17]

Y. LiJ. XieM. Wang and L. Liang, Super efficiency evaluation using a common platform on a cooperative game, European Journal of Operational Research, 255 (2016), 884-892. doi: 10.1016/j.ejor.2016.06.001.

[18]

S. Lim, Minimax and maximin formulations of cross-efficiency in DEA, Computers & Industrial Engineering, 62 (2012), 726-731.

[19]

S. LimK. W. Oh and J. Zhu, Use of DEA cross-efficiency evaluation in portfolio selection: An application to Korean stock market, European Journal of Operational Research, 236 (2014), 361-368. doi: 10.1016/j.ejor.2013.12.002.

[20]

F. H. Liu and H. Hsuan Peng, Ranking of units on the DEA frontier with common weights, Computers & Operations Research, 35 (2008), 1624-1637.

[21]

W.-M. Lu and S.-F. Lo, An interactive benchmark model ranking performers -Application to financial holding companies, Mathematical and Computer Modelling, 49 (2009), 172-179. doi: 10.1016/j.mcm.2008.06.008.

[22]

M. OralO. Kettani and P. Lang, A methodology for collective evaluation and selection of industrial R & D projects, Management Science, 37 (1991), 871-885.

[23]

A. Oukil and G. R. Amin, Maximum appreciative cross-efficiency in DEA: A new ranking method, Computers & Industrial Engineering, 81 (2015), 14-21.

[24]

C. ParkanJ. WangD. Wu and G. Wei, Data envelopment analysis based on maximin relative efficiency criterion, Computers & Operations Research, 39 (2012), 2478-2487. doi: 10.1016/j.cor.2011.12.015.

[25]

V. V. Podinovski, DEA models for the explicit maximisation of relative efficiency, European Journal of Operational Research, 131 (2001), 572-586. doi: 10.1016/S0377-2217(00)00099-0.

[26]

V. V. Podinovski and A. D. Athanassopoulos, Assessing the relative efficiency of decision making units using DEA models with weight restrictions, Journal of the Operational Research Society, 49 (1998), 500. doi: 10.1016/j.ejor.2016.04.035.

[27]

S. Ramezani-TarkhoraniM. KhodabakhshiS. Mehrabian and F. Nuri-Bahmani, Ranking decision-making units using common weights in DEA, Applied Mathematical Modelling, 38 (2014), 3890-3890. doi: 10.1016/j.apm.2013.08.029.

[28]

J. L. Ruiz and I. Sirvent, On the DEA total weight flexibility and the aggregation in cross-efficiency evaluations, European Journal of Operational Research, 223 (2012), 732-738. doi: 10.1016/j.ejor.2012.06.011.

[29]

S. J. SadjadiH. OmraniS. AbdollahzadehM. Alinaghian and H. Mohammadi, A robust super-efficiency data envelopment analysis model for ranking of provincial gas companies in Iran, Expert Systems with Applications, 38 (2011), 10875-10881.

[30]

L. M. Seiford and J. Zhu, Context-dependent data envelopment analysis -Measuring attractiveness and progress, Omega, 31 (2003), 397-408.

[31]

T. R. SextonR. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions, New Directions for Evaluation, (1986), 73-105.

[32]

M. Soltanifar and F. Hosseinzadeh Lotfi, The voting analytic hierarchy process method for discriminating among efficient decision making units in data envelopment analysis, Computers & Industrial Engineering, 60 (2011), 585-592.

[33]

J. SunJ. Wu and D. Guo, Performance ranking of units considering ideal and anti-ideal DMU with common weights, Applied Mathematical Modelling, 37 (2013), 6301-6310. doi: 10.1016/j.apm.2013.01.010.

[34]

R. M. Thrall, Duality, classification and slacks in DEA, Annals of Operations Research, 66 (1996), 109-138. doi: 10.1007/BF02187297.

[35]

K. Tone, A slacks-based measure of super-efficiency in data envelopment analysis, European Journal of Operational Research, 143 (2002), 32-41. doi: 10.1016/S0377-2217(01)00324-1.

[36]

Y. M. WangK. S. Chin and J. B. Yang, Measuring the performances of decision-making units using geometric average efficiency, Journal of the Operational Research Society, 58 (2007), 929-937. doi: 10.1016/j.cam.2005.12.025.

[37]

Y.-M. Wang and K.-S. Chin, Some alternative models for DEA cross-efficiency evaluation, International Journal of Production Economics, 128 (2010), 332-338.

[38]

Y.-M. Wang and P. Jiang, Alternative mixed integer linear programming models for identifying the most efficient decision making unit in data envelopment analysis, Computers & Industrial Engineering, 62 (2012), 546-553.

[39]

M. Wang and Y. Li, Supplier evaluation based on Nash bargaining game model, Expert Systems with Applications, 41 (2014), 4181-4185.

[40]

J. WuL. LiangF. Yang and H. Yan, Bargaining game model in the evaluation of decision making units, Expert Systems with Applications, 36 (2009), 4357-4362.

[41]

J. WuJ. ChuQ. ZhuP. Yin and L. Liang, DEA cross-efficiency evaluation based on satisfaction degree: an application to technology selection, International Journal of Production Research, 54 (2016), 5990-6007.

[42]

J. WuJ. ChuQ. ZhuP. Yin and L. Liang, Extended secondary goal models for weights selection in DEA cross-efficiency evaluation, Computers & Industrial Engineering, 93 (2016), 143-151.

[43]

M. Zerafat AngizA. Mustafa and M. J. Kamali, Cross-ranking of decision making units in data envelopment analysis, Applied Mathematical Modelling, 37 (2013), 398-405. doi: 10.1016/j.apm.2012.02.038.

Figure 1.  Graphical representation of the hit or miss Monte Carlo method
Figure 2.  Relative efficiency scores of A, B, and C
Table 1.  Cross-efficiency matrix
$\mathbf{DMU_1}$ $\mathbf{DMU_2}$ $\dots$ $\mathbf{DMU_j}$$\dots$ $\mathbf{DMU_n}$
$\mathbf{DMU_1}$ $E_{11}$ $E_{12}$ $E_{1j}$$E_{1n}$
$\mathbf{DMU_2}$ $E_{21}$ $E_{22}$ $E_{2j}$ $E_{2n}$
$\mathbf{DMU_j}$ $E_{j1}$ $E_{j2}$ $E_{jj}$ $E_{jn}$
$\mathbf{DMU_n}$ $E_{n1}$ $E_{n2}$ $E_{nj}$ $E_{nn}$
$E_j^{CE}$ $\frac{1}{n} \sum_{d=1}^n E_{d1}$ $\frac{1}{n} \sum_{d=1}^n E_{d2}$ $\frac{1}{n} \sum_{d=1}^n E_{dj}$ $\frac{1}{n} \sum_{d=1}^n E_{dn}$
$\mathbf{DMU_1}$ $\mathbf{DMU_2}$ $\dots$ $\mathbf{DMU_j}$$\dots$ $\mathbf{DMU_n}$
$\mathbf{DMU_1}$ $E_{11}$ $E_{12}$ $E_{1j}$$E_{1n}$
$\mathbf{DMU_2}$ $E_{21}$ $E_{22}$ $E_{2j}$ $E_{2n}$
$\mathbf{DMU_j}$ $E_{j1}$ $E_{j2}$ $E_{jj}$ $E_{jn}$
$\mathbf{DMU_n}$ $E_{n1}$ $E_{n2}$ $E_{nj}$ $E_{nn}$
$E_j^{CE}$ $\frac{1}{n} \sum_{d=1}^n E_{d1}$ $\frac{1}{n} \sum_{d=1}^n E_{d2}$ $\frac{1}{n} \sum_{d=1}^n E_{dj}$ $\frac{1}{n} \sum_{d=1}^n E_{dn}$
Table 2.  Data set for illustrative example
$\mathbf{DMUs}$ A B C
Output $\mathbf{y}$111
Input $\mathbf{x_1}$146
Input $\mathbf{x_2}$622
$\mathbf{DMUs}$ A B C
Output $\mathbf{y}$111
Input $\mathbf{x_1}$146
Input $\mathbf{x_2}$622
Table 3.  Ranking DMUs by Super-Efficiency, Cross-Efficiency and CSW
DMU Efficiency Super- Rank Cross- Rank CSW Rank
score eff. score eff. score
A1410.5533.981
B11.320.7511.32
C1130.7220.733
DMU Efficiency Super- Rank Cross- Rank CSW Rank
score eff. score eff. score
A1410.5533.981
B11.320.7511.32
C1130.7220.733
Table 4.  Ranking by ATE with 1000/2000 trials
$\mathbf{DMUs}$ A B C
$N_H$804891729
$\Psi_i$0.8040.8910.729
Rank213
$N_H$160617521397
$\Psi_i$0.8030.8760.699
Rank213
$\mathbf{DMUs}$ A B C
$N_H$804891729
$\Psi_i$0.8040.8910.729
Rank213
$N_H$160617521397
$\Psi_i$0.8030.8760.699
Rank213
Table 5.  Normalized inputs and outputs for 20 DMUs
$\mathbf{DMU}$ $\mathbf{I_1}$ $\mathbf{I_2}$ $\mathbf{I_3}$ $\mathbf{O_1}$ $\mathbf{O_2}$ $\mathbf{O_3}$
$\mathbf{DMU_{1}}$0.9500.7000.1550.1900.5210.293
$\mathbf{DMU_{2}}$0.7960.6001.0000.2270.6270.462
$\mathbf{DMU_{3}}$0.7980.7500.5130.2280.9700.261
$\mathbf{DMU_{4}}$0.8650.5500.2100.1930.6321.000
$\mathbf{DMU_{5}}$0.8150.8500.2680.2330.7220.246
$\mathbf{DMU_{6}}$0.8420.6500.5000.2070.6030.569
$\mathbf{DMU_{7}}$0.7190.6000.3500.1820.9000.716
$\mathbf{DMU_{8}}$0.7850.7500.1200.1250.2340.298
$\mathbf{DMU_{9}}$0.4760.6000.1350.0800.3640.244
$\mathbf{DMU_{10}}$0.6780.5500.5100.0820.1840.049
$\mathbf{DMU_{11}}$0.7111.0000.3050.2120.3180.403
$\mathbf{DMU_{12}}$0.8110.6500.2550.1230.9230.628
$\mathbf{DMU_{13}}$0.6590.8500.3400.1760.6450.261
$\mathbf{DMU_{14}}$0.9760.8000.5400.1440.5140.243
$\mathbf{DMU_{15}}$0.6850.9500.4501.0000.2620.098
$\mathbf{DMU_{16}}$0.6130.9000.5250.1150.4020.464
$\mathbf{DMU_{17}}$1.0000.6000.2050.0901.0000.161
$\mathbf{DMU_{18}}$0.6340.6500.2350.0590.3490.680
$\mathbf{DMU_{19}}$0.3270.7000.2380.0390.1900.111
$\mathbf{DMU_{20}}$0.5830.5500.5000.1100.6150.764
$\mathbf{DMU}$ $\mathbf{I_1}$ $\mathbf{I_2}$ $\mathbf{I_3}$ $\mathbf{O_1}$ $\mathbf{O_2}$ $\mathbf{O_3}$
$\mathbf{DMU_{1}}$0.9500.7000.1550.1900.5210.293
$\mathbf{DMU_{2}}$0.7960.6001.0000.2270.6270.462
$\mathbf{DMU_{3}}$0.7980.7500.5130.2280.9700.261
$\mathbf{DMU_{4}}$0.8650.5500.2100.1930.6321.000
$\mathbf{DMU_{5}}$0.8150.8500.2680.2330.7220.246
$\mathbf{DMU_{6}}$0.8420.6500.5000.2070.6030.569
$\mathbf{DMU_{7}}$0.7190.6000.3500.1820.9000.716
$\mathbf{DMU_{8}}$0.7850.7500.1200.1250.2340.298
$\mathbf{DMU_{9}}$0.4760.6000.1350.0800.3640.244
$\mathbf{DMU_{10}}$0.6780.5500.5100.0820.1840.049
$\mathbf{DMU_{11}}$0.7111.0000.3050.2120.3180.403
$\mathbf{DMU_{12}}$0.8110.6500.2550.1230.9230.628
$\mathbf{DMU_{13}}$0.6590.8500.3400.1760.6450.261
$\mathbf{DMU_{14}}$0.9760.8000.5400.1440.5140.243
$\mathbf{DMU_{15}}$0.6850.9500.4501.0000.2620.098
$\mathbf{DMU_{16}}$0.6130.9000.5250.1150.4020.464
$\mathbf{DMU_{17}}$1.0000.6000.2050.0901.0000.161
$\mathbf{DMU_{18}}$0.6340.6500.2350.0590.3490.680
$\mathbf{DMU_{19}}$0.3270.7000.2380.0390.1900.111
$\mathbf{DMU_{20}}$0.5830.5500.5000.1100.6150.764
Table 6.  Computational results
$\mathbf{DMU}$ Eff. $N_H$ ATE $N_H$ ATE Super- Cross- CSW
score rank. rank. eff. eff. rank.
1000 1000 2000 2000 rank. rank.
trials trials trials trials
$\mathbf{DMU_{1}}$1.000448793877913
$\mathbf{DMU_{2}}$0.901999129
$\mathbf{DMU_{3}}$0.99188866
$\mathbf{DMU_{4}}$1.000921118471223
$\mathbf{DMU_{5}}$0.89710101088
$\mathbf{DMU_{6}}$0.748151514117
$\mathbf{DMU_{7}}$1.000875217512512
$\mathbf{DMU_{8}}$0.7971212121616
$\mathbf{DMU_{9}}$0.7871313131312
$\mathbf{DMU_{10}}$0.2892020202020
$\mathbf{DMU_{11}}$0.6041616161414
$\mathbf{DMU_{12}}$1.000793315603634
$\mathbf{DMU_{13}}$0.8161111111011
$\mathbf{DMU_{14}}$0.4691818181717
$\mathbf{DMU_{15}}$1.000574611626141
$\mathbf{DMU_{16}}$0.6391414151515
$\mathbf{DMU_{17}}$1.0005655115553510
$\mathbf{DMU_{18}}$0.4721717171818
$\mathbf{DMU_{19}}$0.4081919191919
$\mathbf{DMU_{20}}$1.000735414724475
$\mathbf{DMU}$ Eff. $N_H$ ATE $N_H$ ATE Super- Cross- CSW
score rank. rank. eff. eff. rank.
1000 1000 2000 2000 rank. rank.
trials trials trials trials
$\mathbf{DMU_{1}}$1.000448793877913
$\mathbf{DMU_{2}}$0.901999129
$\mathbf{DMU_{3}}$0.99188866
$\mathbf{DMU_{4}}$1.000921118471223
$\mathbf{DMU_{5}}$0.89710101088
$\mathbf{DMU_{6}}$0.748151514117
$\mathbf{DMU_{7}}$1.000875217512512
$\mathbf{DMU_{8}}$0.7971212121616
$\mathbf{DMU_{9}}$0.7871313131312
$\mathbf{DMU_{10}}$0.2892020202020
$\mathbf{DMU_{11}}$0.6041616161414
$\mathbf{DMU_{12}}$1.000793315603634
$\mathbf{DMU_{13}}$0.8161111111011
$\mathbf{DMU_{14}}$0.4691818181717
$\mathbf{DMU_{15}}$1.000574611626141
$\mathbf{DMU_{16}}$0.6391414151515
$\mathbf{DMU_{17}}$1.0005655115553510
$\mathbf{DMU_{18}}$0.4721717171818
$\mathbf{DMU_{19}}$0.4081919191919
$\mathbf{DMU_{20}}$1.000735414724475
Table 7.  Spearman rank-order correlation index
Models ATE Super-eff Cross-eff CSW
ATE10.9620.9430.859
Super-efficiency10.9250.865
Cross-efficiency10.937
CSW1
Models ATE Super-eff Cross-eff CSW
ATE10.9620.9430.859
Super-efficiency10.9250.865
Cross-efficiency10.937
CSW1
[1]

Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial & Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014

[2]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[3]

Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311

[4]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[5]

Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial & Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531

[6]

Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018043

[7]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[8]

Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial & Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623

[9]

Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683

[10]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[11]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[12]

Angela Cadena, Adriana Marcucci, Juan F. Pérez, Hernando Durán, Hernando Mutis, Camilo Taútiva, Fernando Palacios. Efficiency analysis in electricity transmission utilities. Journal of Industrial & Management Optimization, 2009, 5 (2) : 253-274. doi: 10.3934/jimo.2009.5.253

[13]

Matthew O. Williams, Clarence W. Rowley, Ioannis G. Kevrekidis. A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2015, 2 (2) : 247-265. doi: 10.3934/jcd.2015005

[14]

Deren Han, Xiaoming Yuan. Existence of anonymous link tolls for decentralizing an oligopolistic game and the efficiency analysis. Journal of Industrial & Management Optimization, 2011, 7 (2) : 347-364. doi: 10.3934/jimo.2011.7.347

[15]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[16]

Gabrielle Demange. Collective attention and ranking methods. Journal of Dynamics & Games, 2014, 1 (1) : 17-43. doi: 10.3934/jdg.2014.1.17

[17]

Zuray Melgarejo, Francisco J. Arcelus, Katrin Simon-Elorz. A three-stage DEA-SFA efficiency analysis of labour-owned and mercantile firms. Journal of Industrial & Management Optimization, 2011, 7 (3) : 573-592. doi: 10.3934/jimo.2011.7.573

[18]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[19]

Sylvain Ervedoza, Enrique Zuazua. A systematic method for building smooth controls for smooth data. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1375-1401. doi: 10.3934/dcdsb.2010.14.1375

[20]

Pankaj Sharma, David Baglee, Jaime Campos, Erkki Jantunen. Big data collection and analysis for manufacturing organisations. Big Data & Information Analytics, 2017, 2 (2) : 127-139. doi: 10.3934/bdia.2017002

 Impact Factor: 

Metrics

  • PDF downloads (30)
  • HTML views (145)
  • Cited by (0)

[Back to Top]