September 2017, 7(3): 289-299. doi: 10.3934/naco.2017019

On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids

1. 

National Physical Laboratory, Hampton Road, Teddington, UK

2. 

Aix Marseille Univ, CNRS, Centrale Marseille, I2M. Technopôle Château-Gombert, 39 rue Joliot Curie, 13453 Marseille Cedex 13, France

3. 

Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, 16 route de Gray 25000, Besançon, France

* Corresponding author: Stephane Chretien

The firrst author is supported by National Physical Laboratory

Received  January 2017 Revised  June 2017 Published  July 2017

Pinning control on complex dynamical networks has emerged as a very important topic in recent trends of control theory due to the extensive study of collective coupled behaviors and their role in physics, engineering and biology. In practice, real-world networks consist of a large number of vertices and one may only be able to perform a control on a fraction of them only. Controllability of such systems has been addressed in [17], where it was reformulated as a global asymptotic stability problem. The goal of this short note is to refine the analysis proposed in [17] using recent results in singular value perturbation theory.

Citation: Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019
References:
[1]

N. Abaid and M. Porfiri, Consensus over numerosity-constrained random networks, IEEE Transactions on Automatic Control, 56 (2011), 649-654. doi: 10.1109/TAC.2010.2092270.

[2]

Andries E. Brouwer and Willem H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012. doi: 10.1007/978-1-4614-1939-6.

[3]

P. N. BrownG. D. Byrne and A. C. Hindmarsh, VODE: A variable coefficient ODE solver, SIAM J. Sci. Stat. Comput., 10 (1989), 1038-1051. doi: 10.1137/0910062.

[4]

S. Chrétien and S. Darses, Perturbation bounds on the extremal singular values of a matrix after appending a column, preprint, arXiv: 1406.5441, 2014.

[5]

P. DeLellisdi Bernardo and M. Porfiri, Pinning control of complex networks via edge snapping, Chaos: An Interdisciplinary Journal of Nonlinear Science, 21 (2011), 033119. doi: 10.1063/1.3626024.

[6]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564. doi: 10.1016/j.automatica.2014.04.012.

[7]

A. Ghosh and S. Boyd, Growing well connected graphs, Proceedings of the 45th IEEE Conference on Decision and Control, (2006), 6605-6611.

[8]

Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, Exploring network structure, dynamics, and function using network, in Proceedings of the 7th Python in Science Conference (SciPy2008)(eds. Gaël Varoquaux, Travis Vaught and Jarrod Millman), Pasadena, CA USA, (2008), 11-15.

[9] Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. doi: 10.1017/CBO9780511810817.
[10]

J. D. Hunter, Matplotlib: A 2D graphics environment, Computing In Science & Engineering, 9 (2007), 90-95.

[11]

G. P. JiangW. K. S Tang and G. R. Chen, A simple global synchronization criterion for coupled chaotic systems, Chaos, Solitons & Fractals, 15 (2003), 925-935. doi: 10.1016/S0960-0779(02)00214-X.

[12]

E. Jones, E. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python, http://www.scipy.org/.

[13]

Chi-Kwong Li and Ren-Cang Li, A note on eigenvalues of perturbed Hermitian matrices, Linear Algebra Appl., 395 (2005), 183-190. doi: 10.1016/j.laa.2004.08.026.

[14]

A. E. Motter, Networkcontrology, Chaos, 25 (2015), 097621. doi: 10.1063/1.4931570.

[15]

A. E. MotterS. A. MyersM. Anghel and T. Nishikawa, Spontaneous synchrony in power-grid networks, Nature Physics, 9 (2013), 191-197.

[16]

T. Nishikawa and A.E. Motter, Comparative analysis of existing models for power-grid synchronization, New Journal of Physics, 17 (2015), 015012. doi: 10.1063/1.4960617.

[17]

Maurizio Porfiri and Mario di Bernardo, Criteria for global pinning-controllability of complex networks, Automatica J. IFAC, 44 (2008), 3100-3106. doi: 10.1016/j.automatica.2008.05.006.

[18]

L. Pecora and G. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), 2109.

[19]

M. Porfiri and F. Fiorilli, Node-to-node pinning control of complex networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, 19 (2009), 013122. doi: 10.1063/1.3080192.

[20]

M. Porfiri and F. Fiorilli, Experiments on node-to-node pinning control of Chua's circuits, Physica D: Nonlinear Phenomena, 239 (2010), 454-464. doi: 10.1063/1.3080192.

[21]

John W. Simpson-PorcoFlorian Dörfler and Francesco Bullo, Synchronization and power sharing for droop-controlled inverters in islanded microgrids, Automatica, 49 (2013), 2603-2611. doi: 10.1016/j.automatica.2013.05.018.

[22]

Jean-Jacques E. Slotine and Weiping Li, Applied Nonlinear Control, NJ: Prantice-Hall, Englewood Cliffs, 1991.

[23]

F. Sorrentino, Effects of the network structural properties on its controllability, Chaos: An Interdisciplinary Journal of Nonlinear Science, 17 (2007), 033101.

[24]

Stéfan van der WaltS. Chris Colbert and Gaël Varoquaux, The NumPy array: A structure for efficient numerical computation, Computing in Science & Engineering, 13 (2011), 22-30. doi: 10.1109/MCSE.2011.37.

[25]

S. YamaguchiH. IsejimaT. MatsuoR. OkuraK. YagitaM. Kobayashi and H. Okamura, Synchronization of cellular clocks in the suprachiasmatic nucleus, Science, 302 (2003), 1408-1412.

show all references

References:
[1]

N. Abaid and M. Porfiri, Consensus over numerosity-constrained random networks, IEEE Transactions on Automatic Control, 56 (2011), 649-654. doi: 10.1109/TAC.2010.2092270.

[2]

Andries E. Brouwer and Willem H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012. doi: 10.1007/978-1-4614-1939-6.

[3]

P. N. BrownG. D. Byrne and A. C. Hindmarsh, VODE: A variable coefficient ODE solver, SIAM J. Sci. Stat. Comput., 10 (1989), 1038-1051. doi: 10.1137/0910062.

[4]

S. Chrétien and S. Darses, Perturbation bounds on the extremal singular values of a matrix after appending a column, preprint, arXiv: 1406.5441, 2014.

[5]

P. DeLellisdi Bernardo and M. Porfiri, Pinning control of complex networks via edge snapping, Chaos: An Interdisciplinary Journal of Nonlinear Science, 21 (2011), 033119. doi: 10.1063/1.3626024.

[6]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564. doi: 10.1016/j.automatica.2014.04.012.

[7]

A. Ghosh and S. Boyd, Growing well connected graphs, Proceedings of the 45th IEEE Conference on Decision and Control, (2006), 6605-6611.

[8]

Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, Exploring network structure, dynamics, and function using network, in Proceedings of the 7th Python in Science Conference (SciPy2008)(eds. Gaël Varoquaux, Travis Vaught and Jarrod Millman), Pasadena, CA USA, (2008), 11-15.

[9] Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. doi: 10.1017/CBO9780511810817.
[10]

J. D. Hunter, Matplotlib: A 2D graphics environment, Computing In Science & Engineering, 9 (2007), 90-95.

[11]

G. P. JiangW. K. S Tang and G. R. Chen, A simple global synchronization criterion for coupled chaotic systems, Chaos, Solitons & Fractals, 15 (2003), 925-935. doi: 10.1016/S0960-0779(02)00214-X.

[12]

E. Jones, E. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python, http://www.scipy.org/.

[13]

Chi-Kwong Li and Ren-Cang Li, A note on eigenvalues of perturbed Hermitian matrices, Linear Algebra Appl., 395 (2005), 183-190. doi: 10.1016/j.laa.2004.08.026.

[14]

A. E. Motter, Networkcontrology, Chaos, 25 (2015), 097621. doi: 10.1063/1.4931570.

[15]

A. E. MotterS. A. MyersM. Anghel and T. Nishikawa, Spontaneous synchrony in power-grid networks, Nature Physics, 9 (2013), 191-197.

[16]

T. Nishikawa and A.E. Motter, Comparative analysis of existing models for power-grid synchronization, New Journal of Physics, 17 (2015), 015012. doi: 10.1063/1.4960617.

[17]

Maurizio Porfiri and Mario di Bernardo, Criteria for global pinning-controllability of complex networks, Automatica J. IFAC, 44 (2008), 3100-3106. doi: 10.1016/j.automatica.2008.05.006.

[18]

L. Pecora and G. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), 2109.

[19]

M. Porfiri and F. Fiorilli, Node-to-node pinning control of complex networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, 19 (2009), 013122. doi: 10.1063/1.3080192.

[20]

M. Porfiri and F. Fiorilli, Experiments on node-to-node pinning control of Chua's circuits, Physica D: Nonlinear Phenomena, 239 (2010), 454-464. doi: 10.1063/1.3080192.

[21]

John W. Simpson-PorcoFlorian Dörfler and Francesco Bullo, Synchronization and power sharing for droop-controlled inverters in islanded microgrids, Automatica, 49 (2013), 2603-2611. doi: 10.1016/j.automatica.2013.05.018.

[22]

Jean-Jacques E. Slotine and Weiping Li, Applied Nonlinear Control, NJ: Prantice-Hall, Englewood Cliffs, 1991.

[23]

F. Sorrentino, Effects of the network structural properties on its controllability, Chaos: An Interdisciplinary Journal of Nonlinear Science, 17 (2007), 033101.

[24]

Stéfan van der WaltS. Chris Colbert and Gaël Varoquaux, The NumPy array: A structure for efficient numerical computation, Computing in Science & Engineering, 13 (2011), 22-30. doi: 10.1109/MCSE.2011.37.

[25]

S. YamaguchiH. IsejimaT. MatsuoR. OkuraK. YagitaM. Kobayashi and H. Okamura, Synchronization of cellular clocks in the suprachiasmatic nucleus, Science, 302 (2003), 1408-1412.

Figure 1.  Evolution of the phase at each bus as a function of time for a random network
Figure 2.  A second example of evolution of the phase at each bus as a function of time for a random network, with same setup
Figure 3.  A last evolution of the phase at each bus, same configuration
[1]

Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631

[2]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[3]

Gengsheng Wang, Guojie Zheng. The optimal control to restore the periodic property of a linear evolution system with small perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1621-1639. doi: 10.3934/dcdsb.2010.14.1621

[4]

Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355

[5]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[6]

Óscar Vega-Amaya, Joaquín López-Borbón. A perturbation approach to a class of discounted approximate value iteration algorithms with borel spaces. Journal of Dynamics & Games, 2016, 3 (3) : 261-278. doi: 10.3934/jdg.2016014

[7]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[8]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

[9]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[10]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[11]

Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513

[12]

Alain Bensoussan, John Liu, Jiguang Yuan. Singular control and impulse control: A common approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 27-57. doi: 10.3934/dcdsb.2010.13.27

[13]

Tudor Bînzar, Cristian Lăzureanu. A Rikitake type system with one control. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1755-1776. doi: 10.3934/dcdsb.2013.18.1755

[14]

Reza Kamyar, Matthew M. Peet. Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2383-2417. doi: 10.3934/dcdsb.2015.20.2383

[15]

Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415

[16]

K. Renee Fister, Jennifer Hughes Donnelly. Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences & Engineering, 2005, 2 (3) : 499-510. doi: 10.3934/mbe.2005.2.499

[17]

Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

[18]

Marc Massot. Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 433-456. doi: 10.3934/dcdsb.2002.2.433

[19]

Stefano Scrobogna. Derivation of limit equations for a singular perturbation of a 3D periodic Boussinesq system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 5979-6034. doi: 10.3934/dcds.2017259

[20]

John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501

 Impact Factor: 

Metrics

  • PDF downloads (5)
  • HTML views (21)
  • Cited by (0)

[Back to Top]