2015, 5(2): 185-195. doi: 10.3934/naco.2015.5.185

A new semidefinite relaxation for $L_{1}$-constrained quadratic optimization and extensions

1. 

State Key Laboratory of Software Development Environment, School of Mathematics and System Sciences, Beihang University, Beijing 100191, China

2. 

LMIB of the Ministry of Education, School of Mathematics and System Sciences, Beihang University, Beijing 100191, China, China

Received  September 2014 Revised  April 2015 Published  June 2015

In this paper, by improving the variable-splitting approach, we propose a new semidefinite programming (SDP) relaxation for the nonconvex quadratic optimization problem over the $\ell_1$ unit ball (QPL1). It dominates the state-of-the-art SDP-based bound for (QPL1). As extensions, we apply the new approach to the relaxation problem of the sparse principal component analysis and the nonconvex quadratic optimization problem over the $\ell_p$ ($1< p<2$) unit ball and then show the dominance of the new relaxation.
Citation: Yong Xia, Yu-Jun Gong, Sheng-Nan Han. A new semidefinite relaxation for $L_{1}$-constrained quadratic optimization and extensions. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 185-195. doi: 10.3934/naco.2015.5.185
References:
[1]

I. M. Bomze, M. Dür, E. De Klerk, C. Roos, A. J. Quist and T. Terlaky, On copositive programming and standard quadratic optimization problems,, Journal of Global Optimization, 18 (2000), 301. doi: 10.1023/A:1008364005245.

[2]

I. M. Bomze, F. Frommlet and M. Rubey, Improved SDP bounds for minimizing quadratic functions over the l1-ball,, Optimization Letters, 1 (2007), 49. doi: 10.1007/s11590-006-0018-1.

[3]

A. R. Conn, N. I. M. Gould and P. L. Toint, Trust-Region Methods,, MPS/SIAM Series on Optimization. SIAM, (2000). doi: 10.1137/1.9780898719857.

[4]

A. d'Aspremont, L. El Ghaoui, M. I. Jordan and G. R. G. Lanckriet, A direct formulation for sparse PCA using semidefinite programming,, SIAM Review, 48 (2007), 434.

[5]

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming,, version 1. 21, (2010).

[6]

Y. Hsia, Complexity and Nonlinear Semidefinite Programming Reformulation of l1-constrained Nonconvex Quadratic Optimization,, Optimization Letters, 8 (2014), 1433. doi: 10.1007/s11590-013-0670-1.

[7]

S. Khot and A. Naor, Grothendieck-type inequalities in combinatorial optimization,, Communications on Pure and Applied Mathematics, 65 (2012), 992. doi: 10.1002/cpa.21398.

[8]

G. Kindler, A. Naor and G. Schechtman, The UGC hardness threshold of the Grothendieck problem,, Math. Oper. Res., 35 (2010), 267. doi: 10.1287/moor.1090.0425.

[9]

L. Lovasz and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization,, SIAM. J. Optimization, 1 (1991), 166. doi: 10.1137/0801013.

[10]

R. Luss and M. Teboulle, Convex Approximations to Sparse PCA via Lagrangian Duality,, Operations Research Letters, 39 (2011), 57. doi: 10.1016/j.orl.2010.11.005.

[11]

J. M. Martínez, Local minimizers of quadratic functions on Euclidean balls and spheres,, SIAM. J. Optimization. 4 (1994), 4 (1994), 159. doi: 10.1137/0804009.

[12]

Y. Nesterov, Global Quadratic Optimization via Conic Relaxation,, in Handbook of Semidefinite Programming, (2000), 363.

[13]

M.Ç. Pinar and M. Teboulle, On semidefinite bounds for maximization of a non-convex quadratic objective over the l1 unit ball,, RAIRO-Operations Research, 40 (2006), 253. doi: 10.1051/ro:2006023.

[14]

J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimation over symmetric cones,, Optimization Methods and Software, 11-12 (1999), 11. doi: 10.1080/10556789908805766.

[15]

Y. Xia, New results on semidefinite bounds for l1-constrained nonconvex quadratic optimization,, RAIRO-Operations Research, 47 (2013), 285. doi: 10.1051/ro/2013039.

show all references

References:
[1]

I. M. Bomze, M. Dür, E. De Klerk, C. Roos, A. J. Quist and T. Terlaky, On copositive programming and standard quadratic optimization problems,, Journal of Global Optimization, 18 (2000), 301. doi: 10.1023/A:1008364005245.

[2]

I. M. Bomze, F. Frommlet and M. Rubey, Improved SDP bounds for minimizing quadratic functions over the l1-ball,, Optimization Letters, 1 (2007), 49. doi: 10.1007/s11590-006-0018-1.

[3]

A. R. Conn, N. I. M. Gould and P. L. Toint, Trust-Region Methods,, MPS/SIAM Series on Optimization. SIAM, (2000). doi: 10.1137/1.9780898719857.

[4]

A. d'Aspremont, L. El Ghaoui, M. I. Jordan and G. R. G. Lanckriet, A direct formulation for sparse PCA using semidefinite programming,, SIAM Review, 48 (2007), 434.

[5]

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming,, version 1. 21, (2010).

[6]

Y. Hsia, Complexity and Nonlinear Semidefinite Programming Reformulation of l1-constrained Nonconvex Quadratic Optimization,, Optimization Letters, 8 (2014), 1433. doi: 10.1007/s11590-013-0670-1.

[7]

S. Khot and A. Naor, Grothendieck-type inequalities in combinatorial optimization,, Communications on Pure and Applied Mathematics, 65 (2012), 992. doi: 10.1002/cpa.21398.

[8]

G. Kindler, A. Naor and G. Schechtman, The UGC hardness threshold of the Grothendieck problem,, Math. Oper. Res., 35 (2010), 267. doi: 10.1287/moor.1090.0425.

[9]

L. Lovasz and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization,, SIAM. J. Optimization, 1 (1991), 166. doi: 10.1137/0801013.

[10]

R. Luss and M. Teboulle, Convex Approximations to Sparse PCA via Lagrangian Duality,, Operations Research Letters, 39 (2011), 57. doi: 10.1016/j.orl.2010.11.005.

[11]

J. M. Martínez, Local minimizers of quadratic functions on Euclidean balls and spheres,, SIAM. J. Optimization. 4 (1994), 4 (1994), 159. doi: 10.1137/0804009.

[12]

Y. Nesterov, Global Quadratic Optimization via Conic Relaxation,, in Handbook of Semidefinite Programming, (2000), 363.

[13]

M.Ç. Pinar and M. Teboulle, On semidefinite bounds for maximization of a non-convex quadratic objective over the l1 unit ball,, RAIRO-Operations Research, 40 (2006), 253. doi: 10.1051/ro:2006023.

[14]

J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimation over symmetric cones,, Optimization Methods and Software, 11-12 (1999), 11. doi: 10.1080/10556789908805766.

[15]

Y. Xia, New results on semidefinite bounds for l1-constrained nonconvex quadratic optimization,, RAIRO-Operations Research, 47 (2013), 285. doi: 10.1051/ro/2013039.

[1]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[2]

Huining Qiu, Xiaoming Chen, Wanquan Liu, Guanglu Zhou, Yiju Wang, Jianhuang Lai. A fast $\ell_1$-solver and its applications to robust face recognition. Journal of Industrial & Management Optimization, 2012, 8 (1) : 163-178. doi: 10.3934/jimo.2012.8.163

[3]

Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305

[4]

Hui Huang, Eldad Haber, Lior Horesh. Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint. Inverse Problems & Imaging, 2012, 6 (3) : 447-464. doi: 10.3934/ipi.2012.6.447

[5]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-25. doi: 10.3934/jimo.2018074

[6]

Shouhong Yang. Semidefinite programming via image space analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1187-1197. doi: 10.3934/jimo.2016.12.1187

[7]

Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial & Management Optimization, 2010, 6 (4) : 881-893. doi: 10.3934/jimo.2010.6.881

[8]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[9]

Yang Li, Yonghong Ren, Yun Wang, Jian Gu. Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved. Journal of Industrial & Management Optimization, 2015, 11 (1) : 65-81. doi: 10.3934/jimo.2015.11.65

[10]

Shu-Cherng Fang, David Y. Gao, Ruey-Lin Sheu, Soon-Yi Wu. Canonical dual approach to solving 0-1 quadratic programming problems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 125-142. doi: 10.3934/jimo.2008.4.125

[11]

Cheng Lu, Zhenbo Wang, Wenxun Xing, Shu-Cherng Fang. Extended canonical duality and conic programming for solving 0-1 quadratic programming problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 779-793. doi: 10.3934/jimo.2010.6.779

[12]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[13]

Chenchen Mou. Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2335-2362. doi: 10.3934/cpaa.2015.14.2335

[14]

Christine Bachoc, Alberto Passuello, Frank Vallentin. Bounds for projective codes from semidefinite programming. Advances in Mathematics of Communications, 2013, 7 (2) : 127-145. doi: 10.3934/amc.2013.7.127

[15]

Guoqiang Wang, Zhongchen Wu, Zhongtuan Zheng, Xinzhong Cai. Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 101-113. doi: 10.3934/naco.2015.5.101

[16]

Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193

[17]

Jie Sun. On methods for solving nonlinear semidefinite optimization problems. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 1-14. doi: 10.3934/naco.2011.1.1

[18]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[19]

Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367

[20]

Zhifeng Dai, Fenghua Wen. A generalized approach to sparse and stable portfolio optimization problem. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1651-1666. doi: 10.3934/jimo.2018025

 Impact Factor: 

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]