
Previous Article
On the global convergence of a parameteradjusting LevenbergMarquardt method
 NACO Home
 This Issue

Next Article
Determining the viability for hybrid control systems on a region with piecewise smooth boundary
Delayrange dependent $H_\infty$ control for uncertain 2Ddelayed systems
1.  College of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, China, China 
2.  Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China 
3.  Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 
References:
[1] 
S. F. Chen, Stability analysis for 2D systems with interval timevarying delays and saturation nonlinearities,, Signal Process, 90 (2010), 2265. Google Scholar 
[2] 
S. F. Chen and I. K. Fong, Delaydependent robust stability and stabilization of twodimensional with statedelayed systems,, Dynamics of Continuous, 16 (2009), 1. Google Scholar 
[3] 
S. F. Chen, Delaydependent stability for 2D systems with timevarying delay subject to state saturation in the Roesser model,, Applied Mathematics and Computation, 216 (2010), 2613. doi: 10.1016/j.amc.2010.03.104. Google Scholar 
[4] 
A. Dhawan and H. Kar, Optimal guaranteed cost control of 2D discrete uncertain systems: An LMI approach,, Signal Processing, 87 (2007), 3075. Google Scholar 
[5] 
A. Dhawan and H. Kar, An LMI approach to robust optimal guaranteed cost control of 2D discrete systems described by the Roesser model,, Signal Processing, 90 (2010), 2648. Google Scholar 
[6] 
A. Dhawan and H. Kar, An improved LMIbased criterion for the design of optimal guaranteed cost controller for 2D discrete uncertain systems,, Signal Processing, 91 (2011), 1032. Google Scholar 
[7] 
A. Dhawa and H. Kar, LMIbased criterion for the robust guaranteed cost control of 2D systems described by the FornasiniMarchesini second model,, Signal Process, 87 (2007), 479. Google Scholar 
[8] 
C. Du, L. Xie and C. Zhang, H_{∞} control and robust stabilization of twodimensional system in Roesser models,, Automatica, 37 (2001), 205. doi: 10.1016/S00051098(00)001552. Google Scholar 
[9] 
C. Du and L. Xie, Stability analysis and stabilization of uncertain twodimensional discrete systems: an LMI approach,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 46 (1999), 1371. Google Scholar 
[10] 
Z. X. Duan, Z. R Xiang and H. R Karimi, Delaydependent exponential stabilization of positive 2D switched statedelayed systems in the Roesser model,, Information Sciences, 272 (2014), 173. doi: 10.1016/j.ins.2014.02.121. Google Scholar 
[11] 
L. El Ghaoui, F. Oustry and M. AitRami, A cone complementarity linearization algorithm for static outputfeedback and related problems,, IEEE Transactions on Automatic Control, 42 (1997), 1171. doi: 10.1109/9.618250. Google Scholar 
[12] 
X. P. Guan, Z. Y. Lin and G. R. Duan, Robust guaranteed cost control for 2D discrete systems,, IEE Proc. Control Theory Appl., 148 (2001), 355. Google Scholar 
[13] 
T. Hinamoto, Stability of 2D discrete systems described by the FornasiniMarchesini second model,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 44 (1997), 254. doi: 10.1109/81.557373. Google Scholar 
[14] 
T. Kaczorek, TwoDimensional Linear System,, Berlin, (1985). Google Scholar 
[15] 
Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, Delaydependent robust stabilization of uncertain statedelayed systems,, International Journal of control, 74 (2001), 1447. doi: 10.1080/00207170110067116. Google Scholar 
[16] 
W. Paszke, K. Galkowski, E. Rogers and D. H. Owens, Hinfinity and guaranteed cost control of discrete linear repetitive processes,, Linear Algebra Appl., 412 (2006), 93. doi: 10.1016/j.laa.2005.01.037. Google Scholar 
[17] 
W. Paszke, J. Lam, K. Galkowski, S. Xu and Z. Lin, Robust stability and stabilisation of 2D discrete statedelayed systems,, Syst. Control Lett., 51 (2004), 278. doi: 10.1016/j.sysconle.2003.09.003. Google Scholar 
[18] 
W. Paszke, J. Lam, K. Galkowski, S. Xu and E. Rogers, H_{∞} control of 2D linear statedelayed systems,, in The 4th IFAC Workshop on TimeDelay Systems (France), (2003), 8. Google Scholar 
[19] 
D. Peng, X. Guan and C. Long, Robust output feedback guaranteed cost control for 2D uncertain state delayed systems,, Asian J. Control, 9 (2004), 470. doi: 10.1111/j.19346093.2007.tb00436.x. Google Scholar 
[20] 
D. Peng and X. Guan, Output feedback H_{∞} control for 2D statedelayed systems,, Circuits Syst. Signal Process, 28 (2009), 147. doi: 10.1007/s0003400890743. Google Scholar 
[21] 
L. M. Wang, S. Y. Mo, D. H. Zhou and F. R. Gao, Robust design of feedback integrated with iterative learning control for batch processes with uncertainties and interval timevarying delays,, J. Process Control, 21 (2011), 987. Google Scholar 
[22] 
L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Robust delay dependent iterative learning faulttolerant control for batch processes with state delay and actuator failures,, J. Process Control, 22 (2012), 1273. Google Scholar 
[23] 
L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Delayrangedependent robust 2D iterative learning control for batch processes with state delay and uncertainties,, J. Process Control, 23 (2013), 715. Google Scholar 
[24] 
L. M. Wang, X. Chen and F. R. Gao, Delayrangedependent robust BIBO stabilization of 2D discrete delayed systems via LMI approach,, In Proceedings of 19th IFAC World Congress, (2014), 10994. Google Scholar 
[25] 
L. Wu, P. Shi, H. Gao and C. Wang, H_{∞} mode reduction for twodimensional discrete statedelayed systems,, IEE Proc. Vis. Image Signal Process, 156 (2006), 769. Google Scholar 
[26] 
J. M. Xu and L. Yu, Delaydependent guaranteed cost control for uncertain 2D discrete systems with state delay in the FM second model,, Journal of the Franklin Institute, 346 (2009), 159. doi: 10.1016/j.jfranklin.2008.08.003. Google Scholar 
[27] 
J. M. Xu and L. Yu, Delaydependent robust H_{∞} control for uncertain 2D discrete statedelay systems in the second FM model,, Multidimensional Syst. Signal Process, 20 (2009), 333. Google Scholar 
[28] 
S. Ye, W. Wang and Y. Zou, Robust guaranteed cost control for class of twodimensional discrete systems with shiftdelays,, Multidimensional Syst. Signal Process, 20 (2009), 297. doi: 10.1007/s1104500800632. Google Scholar 
[29] 
S. X. Ye, J. Z. Li and J. Yao, Robust H_{∞} control for a class of 2D discrete delayed systems,, ISA Transactions, 53 (2015), 1456. Google Scholar 
[30] 
K. W. Yu and C. H. Lien, Stability criteria for uncertain neutral systems with interval timevarying delays,, Chaos, 38 (2008), 650. doi: 10.1016/j.chaos.2007.01.002. Google Scholar 
show all references
References:
[1] 
S. F. Chen, Stability analysis for 2D systems with interval timevarying delays and saturation nonlinearities,, Signal Process, 90 (2010), 2265. Google Scholar 
[2] 
S. F. Chen and I. K. Fong, Delaydependent robust stability and stabilization of twodimensional with statedelayed systems,, Dynamics of Continuous, 16 (2009), 1. Google Scholar 
[3] 
S. F. Chen, Delaydependent stability for 2D systems with timevarying delay subject to state saturation in the Roesser model,, Applied Mathematics and Computation, 216 (2010), 2613. doi: 10.1016/j.amc.2010.03.104. Google Scholar 
[4] 
A. Dhawan and H. Kar, Optimal guaranteed cost control of 2D discrete uncertain systems: An LMI approach,, Signal Processing, 87 (2007), 3075. Google Scholar 
[5] 
A. Dhawan and H. Kar, An LMI approach to robust optimal guaranteed cost control of 2D discrete systems described by the Roesser model,, Signal Processing, 90 (2010), 2648. Google Scholar 
[6] 
A. Dhawan and H. Kar, An improved LMIbased criterion for the design of optimal guaranteed cost controller for 2D discrete uncertain systems,, Signal Processing, 91 (2011), 1032. Google Scholar 
[7] 
A. Dhawa and H. Kar, LMIbased criterion for the robust guaranteed cost control of 2D systems described by the FornasiniMarchesini second model,, Signal Process, 87 (2007), 479. Google Scholar 
[8] 
C. Du, L. Xie and C. Zhang, H_{∞} control and robust stabilization of twodimensional system in Roesser models,, Automatica, 37 (2001), 205. doi: 10.1016/S00051098(00)001552. Google Scholar 
[9] 
C. Du and L. Xie, Stability analysis and stabilization of uncertain twodimensional discrete systems: an LMI approach,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 46 (1999), 1371. Google Scholar 
[10] 
Z. X. Duan, Z. R Xiang and H. R Karimi, Delaydependent exponential stabilization of positive 2D switched statedelayed systems in the Roesser model,, Information Sciences, 272 (2014), 173. doi: 10.1016/j.ins.2014.02.121. Google Scholar 
[11] 
L. El Ghaoui, F. Oustry and M. AitRami, A cone complementarity linearization algorithm for static outputfeedback and related problems,, IEEE Transactions on Automatic Control, 42 (1997), 1171. doi: 10.1109/9.618250. Google Scholar 
[12] 
X. P. Guan, Z. Y. Lin and G. R. Duan, Robust guaranteed cost control for 2D discrete systems,, IEE Proc. Control Theory Appl., 148 (2001), 355. Google Scholar 
[13] 
T. Hinamoto, Stability of 2D discrete systems described by the FornasiniMarchesini second model,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 44 (1997), 254. doi: 10.1109/81.557373. Google Scholar 
[14] 
T. Kaczorek, TwoDimensional Linear System,, Berlin, (1985). Google Scholar 
[15] 
Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, Delaydependent robust stabilization of uncertain statedelayed systems,, International Journal of control, 74 (2001), 1447. doi: 10.1080/00207170110067116. Google Scholar 
[16] 
W. Paszke, K. Galkowski, E. Rogers and D. H. Owens, Hinfinity and guaranteed cost control of discrete linear repetitive processes,, Linear Algebra Appl., 412 (2006), 93. doi: 10.1016/j.laa.2005.01.037. Google Scholar 
[17] 
W. Paszke, J. Lam, K. Galkowski, S. Xu and Z. Lin, Robust stability and stabilisation of 2D discrete statedelayed systems,, Syst. Control Lett., 51 (2004), 278. doi: 10.1016/j.sysconle.2003.09.003. Google Scholar 
[18] 
W. Paszke, J. Lam, K. Galkowski, S. Xu and E. Rogers, H_{∞} control of 2D linear statedelayed systems,, in The 4th IFAC Workshop on TimeDelay Systems (France), (2003), 8. Google Scholar 
[19] 
D. Peng, X. Guan and C. Long, Robust output feedback guaranteed cost control for 2D uncertain state delayed systems,, Asian J. Control, 9 (2004), 470. doi: 10.1111/j.19346093.2007.tb00436.x. Google Scholar 
[20] 
D. Peng and X. Guan, Output feedback H_{∞} control for 2D statedelayed systems,, Circuits Syst. Signal Process, 28 (2009), 147. doi: 10.1007/s0003400890743. Google Scholar 
[21] 
L. M. Wang, S. Y. Mo, D. H. Zhou and F. R. Gao, Robust design of feedback integrated with iterative learning control for batch processes with uncertainties and interval timevarying delays,, J. Process Control, 21 (2011), 987. Google Scholar 
[22] 
L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Robust delay dependent iterative learning faulttolerant control for batch processes with state delay and actuator failures,, J. Process Control, 22 (2012), 1273. Google Scholar 
[23] 
L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Delayrangedependent robust 2D iterative learning control for batch processes with state delay and uncertainties,, J. Process Control, 23 (2013), 715. Google Scholar 
[24] 
L. M. Wang, X. Chen and F. R. Gao, Delayrangedependent robust BIBO stabilization of 2D discrete delayed systems via LMI approach,, In Proceedings of 19th IFAC World Congress, (2014), 10994. Google Scholar 
[25] 
L. Wu, P. Shi, H. Gao and C. Wang, H_{∞} mode reduction for twodimensional discrete statedelayed systems,, IEE Proc. Vis. Image Signal Process, 156 (2006), 769. Google Scholar 
[26] 
J. M. Xu and L. Yu, Delaydependent guaranteed cost control for uncertain 2D discrete systems with state delay in the FM second model,, Journal of the Franklin Institute, 346 (2009), 159. doi: 10.1016/j.jfranklin.2008.08.003. Google Scholar 
[27] 
J. M. Xu and L. Yu, Delaydependent robust H_{∞} control for uncertain 2D discrete statedelay systems in the second FM model,, Multidimensional Syst. Signal Process, 20 (2009), 333. Google Scholar 
[28] 
S. Ye, W. Wang and Y. Zou, Robust guaranteed cost control for class of twodimensional discrete systems with shiftdelays,, Multidimensional Syst. Signal Process, 20 (2009), 297. doi: 10.1007/s1104500800632. Google Scholar 
[29] 
S. X. Ye, J. Z. Li and J. Yao, Robust H_{∞} control for a class of 2D discrete delayed systems,, ISA Transactions, 53 (2015), 1456. Google Scholar 
[30] 
K. W. Yu and C. H. Lien, Stability criteria for uncertain neutral systems with interval timevarying delays,, Chaos, 38 (2008), 650. doi: 10.1016/j.chaos.2007.01.002. Google Scholar 
[1] 
Honglei Xu, Kok Lay Teo. $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach. Journal of Industrial & Management Optimization, 2009, 5 (1) : 153159. doi: 10.3934/jimo.2009.5.153 
[2] 
Ta T.H. Trang, Vu N. Phat, Adly Samir. Finitetime stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303315. doi: 10.3934/jimo.2016.12.303 
[3] 
M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete & Continuous Dynamical Systems  B, 2005, 5 (2) : 365384. doi: 10.3934/dcdsb.2005.5.365 
[4] 
ZhongQiang Wu, XiBo Zhao. Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm. Journal of Industrial & Management Optimization, 2018, 14 (4) : 15651577. doi: 10.3934/jimo.2018021 
[5] 
Chuandong Li, Fali Ma, Tingwen Huang. 2D analysis based iterative learning control for linear discretetime systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175181. doi: 10.3934/jimo.2011.7.175 
[6] 
Vladimir Pozdyayev. 2D system analysis via dual problems and polynomial matrix inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 491504. doi: 10.3934/naco.2016022 
[7] 
Julia GarcíaLuengo, Pedro MarínRubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D NavierStokes equations with infinite delay. Discrete & Continuous Dynamical Systems  A, 2014, 34 (1) : 181201. doi: 10.3934/dcds.2014.34.181 
[8] 
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems  A, 2019, 39 (1) : 75113. doi: 10.3934/dcds.2019004 
[9] 
Franck Boyer, Guillaume Olive. Approximate controllability conditions for some linear 1D parabolic systems with spacedependent coefficients. Mathematical Control & Related Fields, 2014, 4 (3) : 263287. doi: 10.3934/mcrf.2014.4.263 
[10] 
Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete & Continuous Dynamical Systems  A, 2005, 12 (2) : 243250. doi: 10.3934/dcds.2005.12.243 
[11] 
Sachiko Ishida. Global existence and boundedness for chemotaxisNavierStokes systems with positiondependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems  A, 2015, 35 (8) : 34633482. doi: 10.3934/dcds.2015.35.3463 
[12] 
Daniel Alpay, Eduard Tsekanovskiĭ. Subclasses of HerglotzNevanlinna matrixvalued functtons and linear systems. Conference Publications, 2001, 2001 (Special) : 113. doi: 10.3934/proc.2001.2001.1 
[13] 
Xinlong Feng, Yinnian He. On uniform in time $H^2$regularity of the solution for the 2D CahnHilliard equation. Discrete & Continuous Dynamical Systems  A, 2016, 36 (10) : 53875400. doi: 10.3934/dcds.2016037 
[14] 
Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control & Related Fields, 2015, 5 (4) : 845858. doi: 10.3934/mcrf.2015.5.845 
[15] 
Nikos Katzourakis. Nonuniqueness in vectorvalued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313327. doi: 10.3934/cpaa.2015.14.313 
[16] 
Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in VectorValued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 21972198. doi: 10.3934/cpaa.2019098 
[17] 
Peng Cui, Hongguo Zhao, June Feng. State estimation for discrete linear systems with observation timedelayed noise. Journal of Industrial & Management Optimization, 2011, 7 (1) : 7985. doi: 10.3934/jimo.2011.7.79 
[18] 
Julia GarcíaLuengo, Pedro MarínRubio, Gabriela Planas. Attractors for a double timedelayed 2DNavierStokes model. Discrete & Continuous Dynamical Systems  A, 2014, 34 (10) : 40854105. doi: 10.3934/dcds.2014.34.4085 
[19] 
Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reactiondiffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 14711495. doi: 10.3934/cpaa.2016.15.1471 
[20] 
Julia GarcíaLuengo, Pedro MarínRubio, Gabriela Planas. Some regularity results for a double timedelayed 2DNavierStokes model. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 39293946. doi: 10.3934/dcdsb.2018337 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]