2015, 5(1): 11-23. doi: 10.3934/naco.2015.5.11

Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems

1. 

College of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, China, China

2. 

Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China

3. 

Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Received  December 2014 Revised  March 2015 Published  March 2015

This paper proposes a delay-range dependent method to solve a two-dimensional (2D) stabilization and $H_\infty$ control problem for a class of uncertain delayed systems described by the Roessor model with a range delay. By using a new 2D Lyapunov-Krasovskii function and introducing a differential inequality to the difference Lyapunov functional for 2D systems, sufficient delay-range dependent conditions for the existence of the proposed feedback controller scheme are established in terms of linear matrix inequalities (LMIs), which depend on both the difference between the upper and lower delay bounds and the upper delay bound of the interval time-varying delay. By solving these LMIs, the 2D law is explicitly formulated, together with an adjustable robust $H_\infty$ performance level. The analysis of the application in the thermal process demonstrates the effectiveness of the proposed controller.
Citation: Li-Min Wang, Jing-Xian Yu, Jia Shi, Fu-Rong Gao. Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 11-23. doi: 10.3934/naco.2015.5.11
References:
[1]

S. F. Chen, Stability analysis for 2-D systems with interval time-varying delays and saturation nonlinearities,, Signal Process, 90 (2010), 2265. Google Scholar

[2]

S. F. Chen and I. K. Fong, Delay-dependent robust stability and stabilization of two-dimensional with state-delayed systems,, Dynamics of Continuous, 16 (2009), 1. Google Scholar

[3]

S. F. Chen, Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model,, Applied Mathematics and Computation, 216 (2010), 2613. doi: 10.1016/j.amc.2010.03.104. Google Scholar

[4]

A. Dhawan and H. Kar, Optimal guaranteed cost control of 2-D discrete uncertain systems: An LMI approach,, Signal Processing, 87 (2007), 3075. Google Scholar

[5]

A. Dhawan and H. Kar, An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model,, Signal Processing, 90 (2010), 2648. Google Scholar

[6]

A. Dhawan and H. Kar, An improved LMI-based criterion for the design of optimal guaranteed cost controller for 2-D discrete uncertain systems,, Signal Processing, 91 (2011), 1032. Google Scholar

[7]

A. Dhawa and H. Kar, LMI-based criterion for the robust guaranteed cost control of 2-D systems described by the Fornasini-Marchesini second model,, Signal Process, 87 (2007), 479. Google Scholar

[8]

C. Du, L. Xie and C. Zhang, H control and robust stabilization of two-dimensional system in Roesser models,, Automatica, 37 (2001), 205. doi: 10.1016/S0005-1098(00)00155-2. Google Scholar

[9]

C. Du and L. Xie, Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 46 (1999), 1371. Google Scholar

[10]

Z. X. Duan, Z. R Xiang and H. R Karimi, Delay-dependent exponential stabilization of positive 2D switched state-delayed systems in the Roesser model,, Information Sciences, 272 (2014), 173. doi: 10.1016/j.ins.2014.02.121. Google Scholar

[11]

L. El Ghaoui, F. Oustry and M. AitRami, A cone complementarity linearization algorithm for static output-feedback and related problems,, IEEE Transactions on Automatic Control, 42 (1997), 1171. doi: 10.1109/9.618250. Google Scholar

[12]

X. P. Guan, Z. Y. Lin and G. R. Duan, Robust guaranteed cost control for 2-D discrete systems,, IEE Proc. Control Theory Appl., 148 (2001), 355. Google Scholar

[13]

T. Hinamoto, Stability of 2-D discrete systems described by the Fornasini-Marchesini second model,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 44 (1997), 254. doi: 10.1109/81.557373. Google Scholar

[14]

T. Kaczorek, Two-Dimensional Linear System,, Berlin, (1985). Google Scholar

[15]

Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems,, International Journal of control, 74 (2001), 1447. doi: 10.1080/00207170110067116. Google Scholar

[16]

W. Paszke, K. Galkowski, E. Rogers and D. H. Owens, H-infinity and guaranteed cost control of discrete linear repetitive processes,, Linear Algebra Appl., 412 (2006), 93. doi: 10.1016/j.laa.2005.01.037. Google Scholar

[17]

W. Paszke, J. Lam, K. Galkowski, S. Xu and Z. Lin, Robust stability and stabilisation of 2-D discrete state-delayed systems,, Syst. Control Lett., 51 (2004), 278. doi: 10.1016/j.sysconle.2003.09.003. Google Scholar

[18]

W. Paszke, J. Lam, K. Galkowski, S. Xu and E. Rogers, H control of 2-D linear state-delayed systems,, in The 4th IFAC Workshop on Time-Delay Systems (France), (2003), 8. Google Scholar

[19]

D. Peng, X. Guan and C. Long, Robust output feedback guaranteed cost control for 2-D uncertain state delayed systems,, Asian J. Control, 9 (2004), 470. doi: 10.1111/j.1934-6093.2007.tb00436.x. Google Scholar

[20]

D. Peng and X. Guan, Output feedback H control for 2D state-delayed systems,, Circuits Syst. Signal Process, 28 (2009), 147. doi: 10.1007/s00034-008-9074-3. Google Scholar

[21]

L. M. Wang, S. Y. Mo, D. H. Zhou and F. R. Gao, Robust design of feedback integrated with iterative learning control for batch processes with uncertainties and interval time-varying delays,, J. Process Control, 21 (2011), 987. Google Scholar

[22]

L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Robust delay dependent iterative learning fault-tolerant control for batch processes with state delay and actuator failures,, J. Process Control, 22 (2012), 1273. Google Scholar

[23]

L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Delay-range-dependent robust 2D iterative learning control for batch processes with state delay and uncertainties,, J. Process Control, 23 (2013), 715. Google Scholar

[24]

L. M. Wang, X. Chen and F. R. Gao, Delay-range-dependent robust BIBO stabilization of 2D discrete delayed systems via LMI approach,, In Proceedings of 19th IFAC World Congress, (2014), 10994. Google Scholar

[25]

L. Wu, P. Shi, H. Gao and C. Wang, H mode reduction for two-dimensional discrete state-delayed systems,, IEE Proc. Vis. Image Signal Process, 156 (2006), 769. Google Scholar

[26]

J. M. Xu and L. Yu, Delay-dependent guaranteed cost control for uncertain 2-D discrete systems with state delay in the FM second model,, Journal of the Franklin Institute, 346 (2009), 159. doi: 10.1016/j.jfranklin.2008.08.003. Google Scholar

[27]

J. M. Xu and L. Yu, Delay-dependent robust H control for uncertain 2-D discrete state-delay systems in the second FM model,, Multi-dimensional Syst. Signal Process, 20 (2009), 333. Google Scholar

[28]

S. Ye, W. Wang and Y. Zou, Robust guaranteed cost control for class of two-dimensional discrete systems with shift-delays,, Multi-dimensional Syst. Signal Process, 20 (2009), 297. doi: 10.1007/s11045-008-0063-2. Google Scholar

[29]

S. X. Ye, J. Z. Li and J. Yao, Robust H control for a class of 2-D discrete delayed systems,, ISA Transactions, 53 (2015), 1456. Google Scholar

[30]

K. W. Yu and C. H. Lien, Stability criteria for uncertain neutral systems with interval time-varying delays,, Chaos, 38 (2008), 650. doi: 10.1016/j.chaos.2007.01.002. Google Scholar

show all references

References:
[1]

S. F. Chen, Stability analysis for 2-D systems with interval time-varying delays and saturation nonlinearities,, Signal Process, 90 (2010), 2265. Google Scholar

[2]

S. F. Chen and I. K. Fong, Delay-dependent robust stability and stabilization of two-dimensional with state-delayed systems,, Dynamics of Continuous, 16 (2009), 1. Google Scholar

[3]

S. F. Chen, Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model,, Applied Mathematics and Computation, 216 (2010), 2613. doi: 10.1016/j.amc.2010.03.104. Google Scholar

[4]

A. Dhawan and H. Kar, Optimal guaranteed cost control of 2-D discrete uncertain systems: An LMI approach,, Signal Processing, 87 (2007), 3075. Google Scholar

[5]

A. Dhawan and H. Kar, An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model,, Signal Processing, 90 (2010), 2648. Google Scholar

[6]

A. Dhawan and H. Kar, An improved LMI-based criterion for the design of optimal guaranteed cost controller for 2-D discrete uncertain systems,, Signal Processing, 91 (2011), 1032. Google Scholar

[7]

A. Dhawa and H. Kar, LMI-based criterion for the robust guaranteed cost control of 2-D systems described by the Fornasini-Marchesini second model,, Signal Process, 87 (2007), 479. Google Scholar

[8]

C. Du, L. Xie and C. Zhang, H control and robust stabilization of two-dimensional system in Roesser models,, Automatica, 37 (2001), 205. doi: 10.1016/S0005-1098(00)00155-2. Google Scholar

[9]

C. Du and L. Xie, Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 46 (1999), 1371. Google Scholar

[10]

Z. X. Duan, Z. R Xiang and H. R Karimi, Delay-dependent exponential stabilization of positive 2D switched state-delayed systems in the Roesser model,, Information Sciences, 272 (2014), 173. doi: 10.1016/j.ins.2014.02.121. Google Scholar

[11]

L. El Ghaoui, F. Oustry and M. AitRami, A cone complementarity linearization algorithm for static output-feedback and related problems,, IEEE Transactions on Automatic Control, 42 (1997), 1171. doi: 10.1109/9.618250. Google Scholar

[12]

X. P. Guan, Z. Y. Lin and G. R. Duan, Robust guaranteed cost control for 2-D discrete systems,, IEE Proc. Control Theory Appl., 148 (2001), 355. Google Scholar

[13]

T. Hinamoto, Stability of 2-D discrete systems described by the Fornasini-Marchesini second model,, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 44 (1997), 254. doi: 10.1109/81.557373. Google Scholar

[14]

T. Kaczorek, Two-Dimensional Linear System,, Berlin, (1985). Google Scholar

[15]

Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems,, International Journal of control, 74 (2001), 1447. doi: 10.1080/00207170110067116. Google Scholar

[16]

W. Paszke, K. Galkowski, E. Rogers and D. H. Owens, H-infinity and guaranteed cost control of discrete linear repetitive processes,, Linear Algebra Appl., 412 (2006), 93. doi: 10.1016/j.laa.2005.01.037. Google Scholar

[17]

W. Paszke, J. Lam, K. Galkowski, S. Xu and Z. Lin, Robust stability and stabilisation of 2-D discrete state-delayed systems,, Syst. Control Lett., 51 (2004), 278. doi: 10.1016/j.sysconle.2003.09.003. Google Scholar

[18]

W. Paszke, J. Lam, K. Galkowski, S. Xu and E. Rogers, H control of 2-D linear state-delayed systems,, in The 4th IFAC Workshop on Time-Delay Systems (France), (2003), 8. Google Scholar

[19]

D. Peng, X. Guan and C. Long, Robust output feedback guaranteed cost control for 2-D uncertain state delayed systems,, Asian J. Control, 9 (2004), 470. doi: 10.1111/j.1934-6093.2007.tb00436.x. Google Scholar

[20]

D. Peng and X. Guan, Output feedback H control for 2D state-delayed systems,, Circuits Syst. Signal Process, 28 (2009), 147. doi: 10.1007/s00034-008-9074-3. Google Scholar

[21]

L. M. Wang, S. Y. Mo, D. H. Zhou and F. R. Gao, Robust design of feedback integrated with iterative learning control for batch processes with uncertainties and interval time-varying delays,, J. Process Control, 21 (2011), 987. Google Scholar

[22]

L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Robust delay dependent iterative learning fault-tolerant control for batch processes with state delay and actuator failures,, J. Process Control, 22 (2012), 1273. Google Scholar

[23]

L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Delay-range-dependent robust 2D iterative learning control for batch processes with state delay and uncertainties,, J. Process Control, 23 (2013), 715. Google Scholar

[24]

L. M. Wang, X. Chen and F. R. Gao, Delay-range-dependent robust BIBO stabilization of 2D discrete delayed systems via LMI approach,, In Proceedings of 19th IFAC World Congress, (2014), 10994. Google Scholar

[25]

L. Wu, P. Shi, H. Gao and C. Wang, H mode reduction for two-dimensional discrete state-delayed systems,, IEE Proc. Vis. Image Signal Process, 156 (2006), 769. Google Scholar

[26]

J. M. Xu and L. Yu, Delay-dependent guaranteed cost control for uncertain 2-D discrete systems with state delay in the FM second model,, Journal of the Franklin Institute, 346 (2009), 159. doi: 10.1016/j.jfranklin.2008.08.003. Google Scholar

[27]

J. M. Xu and L. Yu, Delay-dependent robust H control for uncertain 2-D discrete state-delay systems in the second FM model,, Multi-dimensional Syst. Signal Process, 20 (2009), 333. Google Scholar

[28]

S. Ye, W. Wang and Y. Zou, Robust guaranteed cost control for class of two-dimensional discrete systems with shift-delays,, Multi-dimensional Syst. Signal Process, 20 (2009), 297. doi: 10.1007/s11045-008-0063-2. Google Scholar

[29]

S. X. Ye, J. Z. Li and J. Yao, Robust H control for a class of 2-D discrete delayed systems,, ISA Transactions, 53 (2015), 1456. Google Scholar

[30]

K. W. Yu and C. H. Lien, Stability criteria for uncertain neutral systems with interval time-varying delays,, Chaos, 38 (2008), 650. doi: 10.1016/j.chaos.2007.01.002. Google Scholar

[1]

Honglei Xu, Kok Lay Teo. $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach. Journal of Industrial & Management Optimization, 2009, 5 (1) : 153-159. doi: 10.3934/jimo.2009.5.153

[2]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[3]

M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 365-384. doi: 10.3934/dcdsb.2005.5.365

[4]

Zhong-Qiang Wu, Xi-Bo Zhao. Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1565-1577. doi: 10.3934/jimo.2018021

[5]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[6]

Vladimir Pozdyayev. 2D system analysis via dual problems and polynomial matrix inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 491-504. doi: 10.3934/naco.2016022

[7]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[8]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

[9]

Franck Boyer, Guillaume Olive. Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Mathematical Control & Related Fields, 2014, 4 (3) : 263-287. doi: 10.3934/mcrf.2014.4.263

[10]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[11]

Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243

[12]

Daniel Alpay, Eduard Tsekanovskiĭ. Subclasses of Herglotz-Nevanlinna matrix-valued functtons and linear systems. Conference Publications, 2001, 2001 (Special) : 1-13. doi: 10.3934/proc.2001.2001.1

[13]

Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037

[14]

Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control & Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845

[15]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[16]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[17]

Peng Cui, Hongguo Zhao, Jun-e Feng. State estimation for discrete linear systems with observation time-delayed noise. Journal of Industrial & Management Optimization, 2011, 7 (1) : 79-85. doi: 10.3934/jimo.2011.7.79

[18]

Julia García-Luengo, Pedro Marín-Rubio, Gabriela Planas. Attractors for a double time-delayed 2D-Navier-Stokes model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4085-4105. doi: 10.3934/dcds.2014.34.4085

[19]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[20]

Julia García-Luengo, Pedro Marín-Rubio, Gabriela Planas. Some regularity results for a double time-delayed 2D-Navier-Stokes model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3929-3946. doi: 10.3934/dcdsb.2018337

 Impact Factor: 

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]