 Previous Article
 NACO Home
 This Issue

Next Article
A weightedpathfollowing method for symmetric cone linear complementarity problems
Auxiliary signal design for failure detection in differentialalgebraic equations
1.  Department of Mathematics, North Carolina State University, Raleigh, North Carolina, 276958205, United States, United States 
References:
[1] 
I. Andjelkovic, K. A. Sweetingham and S. L. Campbell, Active fault detection in nonlinear systems using auxiliary signals,, in American Control Conference, (2008), 2142. Google Scholar 
[2] 
I. Andjelkovic and S. L. Campbell, Direct optimization determination of auxiliary test signals for linear problems with model uncertainty,, in 50th IEEE CDCECC, (2011), 909. Google Scholar 
[3] 
R. E. Bellman, Dynamic Programming,, Princeton University Press, (1957). Google Scholar 
[4] 
G. Besançon, I. RubioScola and D. Georges, Input selection in observer design for nonuniformly observable systems,, in 9th IFAC Symposium on Nonlinear Control Systems, (2013). Google Scholar 
[5] 
K. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial Value Problems in DifferentialAlgebraic Equations,, SIAM, (1996). Google Scholar 
[6] 
A. E. Bryson and Y. C. Ho, Applied Optimal Control,, Hemisphere, (1975). Google Scholar 
[7] 
S. L. Campbell and R. Nikoukhah, Auxiliary Signal Design for Failure Detection,, Princeton University Press, (2004). Google Scholar 
[8] 
S. L. Campbell, Least squares completions for nonlinear differential algebraic equations,, Numerical Mathematics, 65 (1993), 77. doi: 10.1007/BF01385741. Google Scholar 
[9] 
D. Choe, S. L. Campbell and R. Nikoukhah, A comparison of optimal and suboptimal auxiliary signal design approaches,, in IEEE Conference on Control Applications, (2005). Google Scholar 
[10] 
D. Garg, M. A. Patterson, W. W. Hager, A. V. Rao, D. A. Benson and G. T. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods,, Automatica, 46 (2010), 1843. doi: 10.1016/j.automatica.2010.06.048. Google Scholar 
[11] 
D. Garg, W. W. Hager and A. V. Rao, Pseudospectral methods for solving infinitehorizon optimal control problems,, Automatica, 47 (2011), 829. doi: 10.1016/j.automatica.2011.01.085. Google Scholar 
[12] 
D. Garg, M. A. Patterson, C. L. Darby, C. Francolin, G. T. Huntington, W. W. Hager and A. V. Rao, Direct trajectory optimization and costate estimation of finitehorizon and infinitehorizon optimal control problems via a radau pseudospectral method,, Computational Optimization and Applications, 49 (2011), 335. doi: 10.1007/s1058900992910. Google Scholar 
[13] 
M. Gerdin, T. Glad and L. Ljung, Parameter estimation in linear differentialalgebraic equations,, in 13th IFAC Symposium on System Identification, (2003). Google Scholar 
[14] 
M. Gerdts, Parameter identification in higher DAE systems,, Technical Report, (2005). Google Scholar 
[15] 
R. Isermann, Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance,, Springer, (2006). Google Scholar 
[16] 
R. Kircheis and S. Körkel, Parameter estimation for DAE models in a multiple experiment context,, 82nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, 11 (2011), 715. Google Scholar 
[17] 
H. H. Niemann, Active fault diagnosis in closedloop uncertain systems,, in 6th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, (2006), 587. Google Scholar 
[18] 
H. H. Niemann, A setup for active fault diagnosis,, IEEE Transactions on Automatic Control, 51 (2006), 1572. doi: 10.1109/TAC.2006.878724. Google Scholar 
[19] 
M. A. Patterson and A. V. Rao, Exploiting sparsity in direct collocation pseudospectral methods for solving continuoustime optimal control problems,, Journal of Spacecraft and Rockets, 49 (2012), 364. Google Scholar 
[20] 
R. J. Patton, P. M. Frank and R. N. Clark, Issues of Fault Diagnosis for Dynamic Systems,, Springer, (2000). Google Scholar 
[21] 
N. K. Poulsen and H. H. Niemann, Active fault diagnosisa stochastic approach,, in 7th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, (2009). Google Scholar 
[22] 
I. Okay, S. L. Campbell and P. Kunkel, Completions of implicitly defined time varying vector fields,, Linear Algebra and its Applications, 431 (2009), 1422. doi: 10.1016/j.laa.2009.05.006. Google Scholar 
[23] 
I. RubioScola, G. Besançon and D. Georges, Online observability optimization for state affine systems with output injection and observer design,, in 21st IEEE Mediterranean Conference on Control and Automation, (2013). Google Scholar 
[24] 
I. RubioScola, G. Besançon and D. Georges, Input optimization for observability of state affine systems,, in 5th IFAC Symposium on System Structure and Control, (2013). Google Scholar 
show all references
References:
[1] 
I. Andjelkovic, K. A. Sweetingham and S. L. Campbell, Active fault detection in nonlinear systems using auxiliary signals,, in American Control Conference, (2008), 2142. Google Scholar 
[2] 
I. Andjelkovic and S. L. Campbell, Direct optimization determination of auxiliary test signals for linear problems with model uncertainty,, in 50th IEEE CDCECC, (2011), 909. Google Scholar 
[3] 
R. E. Bellman, Dynamic Programming,, Princeton University Press, (1957). Google Scholar 
[4] 
G. Besançon, I. RubioScola and D. Georges, Input selection in observer design for nonuniformly observable systems,, in 9th IFAC Symposium on Nonlinear Control Systems, (2013). Google Scholar 
[5] 
K. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial Value Problems in DifferentialAlgebraic Equations,, SIAM, (1996). Google Scholar 
[6] 
A. E. Bryson and Y. C. Ho, Applied Optimal Control,, Hemisphere, (1975). Google Scholar 
[7] 
S. L. Campbell and R. Nikoukhah, Auxiliary Signal Design for Failure Detection,, Princeton University Press, (2004). Google Scholar 
[8] 
S. L. Campbell, Least squares completions for nonlinear differential algebraic equations,, Numerical Mathematics, 65 (1993), 77. doi: 10.1007/BF01385741. Google Scholar 
[9] 
D. Choe, S. L. Campbell and R. Nikoukhah, A comparison of optimal and suboptimal auxiliary signal design approaches,, in IEEE Conference on Control Applications, (2005). Google Scholar 
[10] 
D. Garg, M. A. Patterson, W. W. Hager, A. V. Rao, D. A. Benson and G. T. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods,, Automatica, 46 (2010), 1843. doi: 10.1016/j.automatica.2010.06.048. Google Scholar 
[11] 
D. Garg, W. W. Hager and A. V. Rao, Pseudospectral methods for solving infinitehorizon optimal control problems,, Automatica, 47 (2011), 829. doi: 10.1016/j.automatica.2011.01.085. Google Scholar 
[12] 
D. Garg, M. A. Patterson, C. L. Darby, C. Francolin, G. T. Huntington, W. W. Hager and A. V. Rao, Direct trajectory optimization and costate estimation of finitehorizon and infinitehorizon optimal control problems via a radau pseudospectral method,, Computational Optimization and Applications, 49 (2011), 335. doi: 10.1007/s1058900992910. Google Scholar 
[13] 
M. Gerdin, T. Glad and L. Ljung, Parameter estimation in linear differentialalgebraic equations,, in 13th IFAC Symposium on System Identification, (2003). Google Scholar 
[14] 
M. Gerdts, Parameter identification in higher DAE systems,, Technical Report, (2005). Google Scholar 
[15] 
R. Isermann, Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance,, Springer, (2006). Google Scholar 
[16] 
R. Kircheis and S. Körkel, Parameter estimation for DAE models in a multiple experiment context,, 82nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, 11 (2011), 715. Google Scholar 
[17] 
H. H. Niemann, Active fault diagnosis in closedloop uncertain systems,, in 6th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, (2006), 587. Google Scholar 
[18] 
H. H. Niemann, A setup for active fault diagnosis,, IEEE Transactions on Automatic Control, 51 (2006), 1572. doi: 10.1109/TAC.2006.878724. Google Scholar 
[19] 
M. A. Patterson and A. V. Rao, Exploiting sparsity in direct collocation pseudospectral methods for solving continuoustime optimal control problems,, Journal of Spacecraft and Rockets, 49 (2012), 364. Google Scholar 
[20] 
R. J. Patton, P. M. Frank and R. N. Clark, Issues of Fault Diagnosis for Dynamic Systems,, Springer, (2000). Google Scholar 
[21] 
N. K. Poulsen and H. H. Niemann, Active fault diagnosisa stochastic approach,, in 7th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, (2009). Google Scholar 
[22] 
I. Okay, S. L. Campbell and P. Kunkel, Completions of implicitly defined time varying vector fields,, Linear Algebra and its Applications, 431 (2009), 1422. doi: 10.1016/j.laa.2009.05.006. Google Scholar 
[23] 
I. RubioScola, G. Besançon and D. Georges, Online observability optimization for state affine systems with output injection and observer design,, in 21st IEEE Mediterranean Conference on Control and Automation, (2013). Google Scholar 
[24] 
I. RubioScola, G. Besançon and D. Georges, Input optimization for observability of state affine systems,, in 5th IFAC Symposium on System Structure and Control, (2013). Google Scholar 
[1] 
Martene L. Fair, Stephen L. Campbell. Active incipient fault detection in continuous time systems with multiple simultaneous faults. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 211224. doi: 10.3934/naco.2011.1.211 
[2] 
Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differentialalgebraic equations. Conference Publications, 2011, 2011 (Special) : 9911000. doi: 10.3934/proc.2011.2011.991 
[3] 
David L. Russell. Coefficient identification and fault detection in linear elastic systems; one dimensional problems. Mathematical Control & Related Fields, 2011, 1 (3) : 391411. doi: 10.3934/mcrf.2011.1.391 
[4] 
Lok Ming Lui, Yalin Wang, Tony F. Chan, Paul M. Thompson. Brain anatomical feature detection by solving partial differential equations on general manifolds. Discrete & Continuous Dynamical Systems  B, 2007, 7 (3) : 605618. doi: 10.3934/dcdsb.2007.7.605 
[5] 
Sergiy Zhuk. Inverse problems for linear illposed differentialalgebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 14671476. doi: 10.3934/proc.2011.2011.1467 
[6] 
Roderick V.N. Melnik, Ningning Song, Per Sandholdt. Dynamics of torquespeed profiles for electric vehicles and nonlinear models based on differentialalgebraic equations. Conference Publications, 2003, 2003 (Special) : 610617. doi: 10.3934/proc.2003.2003.610 
[7] 
Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 13711384. doi: 10.3934/dcdss.2019094 
[8] 
Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229245. doi: 10.3934/ipi.2007.1.229 
[9] 
Monika Muszkieta. A variational approach to edge detection. Inverse Problems & Imaging, 2016, 10 (2) : 499517. doi: 10.3934/ipi.2016009 
[10] 
Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete & Continuous Dynamical Systems  B, 2001, 1 (1) : 125135. doi: 10.3934/dcdsb.2001.1.125 
[11] 
Elena Beretta, Markus Grasmair, Monika Muszkieta, Otmar Scherzer. A variational algorithm for the detection of line segments. Inverse Problems & Imaging, 2014, 8 (2) : 389408. doi: 10.3934/ipi.2014.8.389 
[12] 
Liming Zhang, Tao Qian, Qingye Zeng. Edge detection by using rotational wavelets. Communications on Pure & Applied Analysis, 2007, 6 (3) : 899915. doi: 10.3934/cpaa.2007.6.899 
[13] 
Ugo Locatelli, Letizia Stefanelli. Quasiperiodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete & Continuous Dynamical Systems  B, 2015, 20 (4) : 11551187. doi: 10.3934/dcdsb.2015.20.1155 
[14] 
Yuying Shi, Ying Gu, LiLian Wang, XueCheng Tai. A fast edge detection algorithm using binary labels. Inverse Problems & Imaging, 2015, 9 (2) : 551578. doi: 10.3934/ipi.2015.9.551 
[15] 
Xiangying Meng, Gemma Huguet, John Rinzel. Type III excitability, slope sensitivity and coincidence detection. Discrete & Continuous Dynamical Systems  A, 2012, 32 (8) : 27292757. doi: 10.3934/dcds.2012.32.2729 
[16] 
Ephraim Agyingi, Tamas Wiandt, Sophia A. Maggelakis. Thermal detection of a prevascular tumor embedded in breast tissue. Mathematical Biosciences & Engineering, 2015, 12 (5) : 907915. doi: 10.3934/mbe.2015.12.907 
[17] 
Dominique Zosso, Jing An, James Stevick, Nicholas Takaki, Morgan Weiss, Liane S. Slaughter, Huan H. Cao, Paul S. Weiss, Andrea L. Bertozzi. Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems & Imaging, 2017, 11 (3) : 577600. doi: 10.3934/ipi.2017027 
[18] 
H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Carola Kruse, Simon Shaw, John Whiteman, Mark P. Brewin, Stephen E. Greenwald, Malcolm J. Birch. Model validation for a noninvasive arterial stenosis detection problem. Mathematical Biosciences & Engineering, 2014, 11 (3) : 427448. doi: 10.3934/mbe.2014.11.427 
[19] 
Hirotada Honda. On a model of target detection in molecular communication networks. Networks & Heterogeneous Media, 2019, 14 (4) : 633657. doi: 10.3934/nhm.2019025 
[20] 
Wei Xu, Liying Yu, GuiHua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial & Management Optimization, 2017, 13 (5) : 119. doi: 10.3934/jimo.2019068 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]