2013, 3(1): 63-76. doi: 10.3934/naco.2013.3.63

Instability and growth due to adjustment costs

1. 

University of Vienna, Brünnerstr. 72, 1210 Vienna, Austria, Austria

Received  September 2011 Revised  November 2012 Published  January 2013

This paper provides a new and surprising reason for growth, namely costs. More precisely, adding adjustment costs of the control to a one-dimensional, strictly concave optimal control problem does not affect the steady state(s). Then, sufficiently high adjustment costs turn an interior and saddle-point stable steady state of the original, one-state variable model into a source that can lead to unbounded growth. Given a version of the open economy Ramsey model, the initial conditions determine whether unbounded growth or impoverishment results. Related to this threshold property, the strict concave two-state variable control model allows for thresholds even if it has a unique and stable steady state.
Citation: Franz Wirl, Andreas J. Novak. Instability and growth due to adjustment costs. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 63-76. doi: 10.3934/naco.2013.3.63
References:
[1]

R. J. Barro and X. Sala-i-Martin, "Economic Growth,", Mc Graw Hill, (1995).

[2]

J. Benhabib and K. Nishimura, The Hopf bifurcation and the existence and stability of closed orbits in multi-sector models of economic growth,, Journal of Economic Theory, 21 (1979), 421. doi: 10.1016/0022-0531(79)90050-4.

[3]

E. Dockner, Local stability analysis in optimal control problems with two state variables,, in, 2 (1985), 89.

[4]

R. A. Easterlin, Income and happiness: towards a unified theory,, Economic Journal, 111 (2001), 465. doi: 10.1111/1468-0297.00646.

[5]

G. Feichtinger, A.J. Novak and F. Wirl, Limit cycles in intertemporal adjustment models - theory and applications,, Journal of Economic Dynamics and Control, 18 (1994), 353. doi: 10.1016/0165-1889(94)90013-2.

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields,", (second printing), (1986).

[7]

F. X. Hof and F. Wirl, Wealth induced multiple equilibria in small open economy versions of the Ramsey model,, Homo Oeconomicus, 25 (2008), 1.

[8]

A. Khibnik, I. Yu, A. Kuznetsov, V. V. Levitin and E. V. Nikolaev, "Interactive Local Bifurcation Analyzer, Manual,", Amsterdam, (1992).

[9]

M. Kurz, Optimal economic growth and wealth effects,, International Economic Review, 9 (1968), 348. doi: 10.2307/2556231.

[10]

R. E. Lucas Jr., On the mechanics of economic development,, Journal of Monetary Economics, 22 (1988), 3. doi: 10.1016/0304-3932(88)90168-7.

[11]

S. Rebelo, Long run policy analysis and long-run growth,, Journal of Political Economy, 99 (1991), 500. doi: 10.1086/261764.

[12]

P. Romer, Increasing returns and long-run growth,, Journal of Political Economy, 94 (1986), 1002. doi: 10.1086/261420.

[13]

P. Romer, Endogenous technical change,, Journal of Political Economy, 98 (1990), 71. doi: 10.1086/261725.

[14]

F. Wirl and G. Feichtinger, History dependence in concave economies,, Journal of Economic Behavior and Organization, 57 (2005), 390. doi: 10.1016/j.jebo.2005.04.009.

[15]

F. Wirl, A. J. Novak and F. X. Hof, Happiness due to consumption and its increases, wealth and status,, Studies in Nonlinear Dynamics and Econometrics, 12 (2008).

show all references

References:
[1]

R. J. Barro and X. Sala-i-Martin, "Economic Growth,", Mc Graw Hill, (1995).

[2]

J. Benhabib and K. Nishimura, The Hopf bifurcation and the existence and stability of closed orbits in multi-sector models of economic growth,, Journal of Economic Theory, 21 (1979), 421. doi: 10.1016/0022-0531(79)90050-4.

[3]

E. Dockner, Local stability analysis in optimal control problems with two state variables,, in, 2 (1985), 89.

[4]

R. A. Easterlin, Income and happiness: towards a unified theory,, Economic Journal, 111 (2001), 465. doi: 10.1111/1468-0297.00646.

[5]

G. Feichtinger, A.J. Novak and F. Wirl, Limit cycles in intertemporal adjustment models - theory and applications,, Journal of Economic Dynamics and Control, 18 (1994), 353. doi: 10.1016/0165-1889(94)90013-2.

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields,", (second printing), (1986).

[7]

F. X. Hof and F. Wirl, Wealth induced multiple equilibria in small open economy versions of the Ramsey model,, Homo Oeconomicus, 25 (2008), 1.

[8]

A. Khibnik, I. Yu, A. Kuznetsov, V. V. Levitin and E. V. Nikolaev, "Interactive Local Bifurcation Analyzer, Manual,", Amsterdam, (1992).

[9]

M. Kurz, Optimal economic growth and wealth effects,, International Economic Review, 9 (1968), 348. doi: 10.2307/2556231.

[10]

R. E. Lucas Jr., On the mechanics of economic development,, Journal of Monetary Economics, 22 (1988), 3. doi: 10.1016/0304-3932(88)90168-7.

[11]

S. Rebelo, Long run policy analysis and long-run growth,, Journal of Political Economy, 99 (1991), 500. doi: 10.1086/261764.

[12]

P. Romer, Increasing returns and long-run growth,, Journal of Political Economy, 94 (1986), 1002. doi: 10.1086/261420.

[13]

P. Romer, Endogenous technical change,, Journal of Political Economy, 98 (1990), 71. doi: 10.1086/261725.

[14]

F. Wirl and G. Feichtinger, History dependence in concave economies,, Journal of Economic Behavior and Organization, 57 (2005), 390. doi: 10.1016/j.jebo.2005.04.009.

[15]

F. Wirl, A. J. Novak and F. X. Hof, Happiness due to consumption and its increases, wealth and status,, Studies in Nonlinear Dynamics and Econometrics, 12 (2008).

[1]

Paul Pegon, Filippo Santambrogio, Davide Piazzoli. Full characterization of optimal transport plans for concave costs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6113-6132. doi: 10.3934/dcds.2015.35.6113

[2]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[3]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial & Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461

[4]

Yanqing Hu, Zaiming Liu, Jinbiao Wu. Optimal impulse control of a mean-reverting inventory with quadratic costs. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1685-1700. doi: 10.3934/jimo.2018027

[5]

Chrystie Burr, Laura Gardini, Ferenc Szidarovszky. Discrete time dynamic oligopolies with adjustment constraints. Journal of Dynamics & Games, 2015, 2 (1) : 65-87. doi: 10.3934/jdg.2015.2.65

[6]

Bruce D. Craven, Sardar M. N. Islam. Dynamic optimization models in finance: Some extensions to the framework, models, and computation. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1129-1146. doi: 10.3934/jimo.2014.10.1129

[7]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[8]

Xuepeng Zhang, Zhibin Liang. Optimal layer reinsurance on the maximization of the adjustment coefficient. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 21-34. doi: 10.3934/naco.2016.6.21

[9]

Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456

[10]

Shaolin Ji, Xiaomin Shi. Recursive utility optimization with concave coefficients. Mathematical Control & Related Fields, 2018, 8 (3&4) : 753-775. doi: 10.3934/mcrf.2018033

[11]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[12]

María Barbero-Liñán, Miguel C. Muñoz-Lecanda. Strict abnormal extremals in nonholonomic and kinematic control systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 1-17. doi: 10.3934/dcdss.2010.3.1

[13]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[14]

Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006

[15]

Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008

[16]

B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran. Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences & Engineering, 2004, 1 (2) : 223-241. doi: 10.3934/mbe.2004.1.223

[17]

Peng Zhong, Suzanne Lenhart. Optimal control of integrodifference equations with growth-harvesting-dispersal order. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2281-2298. doi: 10.3934/dcdsb.2012.17.2281

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 569-578. doi: 10.3934/mbe.2016008

[20]

Ş. İlker Birbil, Kerem Bülbül, J. B. G. Frenk, H. M. Mulder. On EOQ cost models with arbitrary purchase and transportation costs. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1211-1245. doi: 10.3934/jimo.2015.11.1211

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]