• Previous Article
    Control parameterization for optimal control problems with continuous inequality constraints: New convergence results
  • NACO Home
  • This Issue
  • Next Article
    Noether's symmetry Theorem for variational and optimal control problems with time delay
2012, 2(3): 601-617. doi: 10.3934/naco.2012.2.601

Optimal control strategies for tuberculosis treatment: A case study in Angola

1. 

Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

2. 

CIDMA — Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Received  March 2012 Revised  March 2012 Published  August 2012

We apply optimal control theory to a tuberculosis model given by a system of ordinary differential equations. Optimal control strategies are proposed to minimize the cost of interventions. Numerical simulations are given using data from Angola.
Citation: Cristiana J. Silva, Delfim F. M. Torres. Optimal control strategies for tuberculosis treatment: A case study in Angola. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 601-617. doi: 10.3934/naco.2012.2.601
References:
[1]

L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations,", Applications of Mathematics 17, (1983).

[2]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors,, Math. Biosci., 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004.

[3]

C. Dye, S. Scheele, P. Dolin, V. Pathania and M. C. Raviglione, Global burden of tuberculosis. Estimated incidence, prevalence, and mortality by country,, Journal of the American Medical Association, 282 (1999), 677. doi: 10.1001/jama.282.7.677.

[4]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Applications of Mathematics, (1975).

[5]

M. G. M. Gomes, P. Rodrigues, F. M. Hilker, N. B. Mantilla-Beniers, M. Muehlen, A. C. Paulo and G. F. Medley, Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions,, Journal of Theoretical Biology, 248 (2007), 608. doi: 10.1016/j.jtbi.2007.06.005.

[6]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3 Optimal Control Software: Theory and User Manual,", Version 3.3, (2004).

[7]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete and Continuous Dynamical Systems - Series B, 2 (2002), 473. doi: 10.3934/dcdsb.2002.2.473.

[8]

M. E. Kruk, N. R. Schwalbe and C. A. Aguiar, Timing of default from tuberculosis treatment: a systematic review,, Tropical Medicine and International Health, 13 (2008), 703. doi: 10.1111/j.1365-3156.2008.02042.x.

[9]

U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment,, Math. Med. Biol., 27 (2010), 157. doi: 10.1093/imammb/dqp012.

[10]

U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy,, Math. Biosci. Eng., 8 (2011), 307. doi: 10.3934/mbe.2011.8.307.

[11]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC, (2007).

[12]

R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints,, Automatica J. IFAC, 44 (2008), 2923. doi: 10.1016/j.automatica.2008.04.011.

[13]

L. Pontryagin, V. Boltyanskii, R. Gramkrelidze and E. Mischenko, "The Mathematical Theory of Optimal Processes,", Wiley Interscience, (1962).

[14]

H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Dynamics of dengue epidemics when using optimal control,, Math. Comput. Modelling, 52 (2010), 1667. doi: 10.1016/j.mcm.2010.06.034.

[15]

H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres and A. Zinober, Dengue disease, basic reproduction number and control,, Int. J. Comput. Math., 89 (2012), 334. doi: 10.1080/00207160.2011.554540.

[16]

P. M. Small and P. I. Fujiwara, Management of tuberculosis in the United States,, N. Engl. J. Med., 345 (2001), 189. doi: 10.1056/NEJM200107193450307.

[17]

K. Styblo, State of art: epidemiology of tuberculosis,, Bull. Int. Union Tuberc., 53 (1978), 141.

[18]

K. Styblo, "Selected Papers, Epidemiology of Tuberculosis,", Royal Netherlands Tuberculosis Association, 24 (1991).

[19]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics, (1991).

[20]

WHO, Treatment of tuberculosis guidelines,, Fourth edition, (2010).

[21]

WHO, Global Tuberculosis Control,, WHO Report 2011, (2011).

[22]

, Available from:, , ().

[23]

, Available from:, , ().

[24]

, Available from:, , ().

[25]

, Available from:, , ().

[26]

, Available from:, , ().

[27]

, Available from:, , ().

[28]

, Available from:, , ().

[29]

, Available from:, , ().

[30]

, Available from:, , ().

[31]

, Available from:, , ().

[32]

, Available from:, , ().

show all references

References:
[1]

L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations,", Applications of Mathematics 17, (1983).

[2]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors,, Math. Biosci., 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004.

[3]

C. Dye, S. Scheele, P. Dolin, V. Pathania and M. C. Raviglione, Global burden of tuberculosis. Estimated incidence, prevalence, and mortality by country,, Journal of the American Medical Association, 282 (1999), 677. doi: 10.1001/jama.282.7.677.

[4]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Applications of Mathematics, (1975).

[5]

M. G. M. Gomes, P. Rodrigues, F. M. Hilker, N. B. Mantilla-Beniers, M. Muehlen, A. C. Paulo and G. F. Medley, Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions,, Journal of Theoretical Biology, 248 (2007), 608. doi: 10.1016/j.jtbi.2007.06.005.

[6]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3 Optimal Control Software: Theory and User Manual,", Version 3.3, (2004).

[7]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete and Continuous Dynamical Systems - Series B, 2 (2002), 473. doi: 10.3934/dcdsb.2002.2.473.

[8]

M. E. Kruk, N. R. Schwalbe and C. A. Aguiar, Timing of default from tuberculosis treatment: a systematic review,, Tropical Medicine and International Health, 13 (2008), 703. doi: 10.1111/j.1365-3156.2008.02042.x.

[9]

U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment,, Math. Med. Biol., 27 (2010), 157. doi: 10.1093/imammb/dqp012.

[10]

U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy,, Math. Biosci. Eng., 8 (2011), 307. doi: 10.3934/mbe.2011.8.307.

[11]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC, (2007).

[12]

R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints,, Automatica J. IFAC, 44 (2008), 2923. doi: 10.1016/j.automatica.2008.04.011.

[13]

L. Pontryagin, V. Boltyanskii, R. Gramkrelidze and E. Mischenko, "The Mathematical Theory of Optimal Processes,", Wiley Interscience, (1962).

[14]

H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Dynamics of dengue epidemics when using optimal control,, Math. Comput. Modelling, 52 (2010), 1667. doi: 10.1016/j.mcm.2010.06.034.

[15]

H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres and A. Zinober, Dengue disease, basic reproduction number and control,, Int. J. Comput. Math., 89 (2012), 334. doi: 10.1080/00207160.2011.554540.

[16]

P. M. Small and P. I. Fujiwara, Management of tuberculosis in the United States,, N. Engl. J. Med., 345 (2001), 189. doi: 10.1056/NEJM200107193450307.

[17]

K. Styblo, State of art: epidemiology of tuberculosis,, Bull. Int. Union Tuberc., 53 (1978), 141.

[18]

K. Styblo, "Selected Papers, Epidemiology of Tuberculosis,", Royal Netherlands Tuberculosis Association, 24 (1991).

[19]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics, (1991).

[20]

WHO, Treatment of tuberculosis guidelines,, Fourth edition, (2010).

[21]

WHO, Global Tuberculosis Control,, WHO Report 2011, (2011).

[22]

, Available from:, , ().

[23]

, Available from:, , ().

[24]

, Available from:, , ().

[25]

, Available from:, , ().

[26]

, Available from:, , ().

[27]

, Available from:, , ().

[28]

, Available from:, , ().

[29]

, Available from:, , ().

[30]

, Available from:, , ().

[31]

, Available from:, , ().

[32]

, Available from:, , ().

[1]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[2]

Holly Gaff, Elsa Schaefer. Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences & Engineering, 2009, 6 (3) : 469-492. doi: 10.3934/mbe.2009.6.469

[3]

Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151-165. doi: 10.3934/mbe.2013.10.151

[4]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[5]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[6]

Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006

[7]

E. Jung, Suzanne Lenhart, Z. Feng. Optimal control of treatments in a two-strain tuberculosis model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 473-482. doi: 10.3934/dcdsb.2002.2.473

[8]

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621

[9]

Djamila Moulay, M. A. Aziz-Alaoui, Hee-Dae Kwon. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention. Mathematical Biosciences & Engineering, 2012, 9 (2) : 369-392. doi: 10.3934/mbe.2012.9.369

[10]

Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587

[11]

Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639

[12]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[13]

Chao Xu, Yimeng Dong, Zhigang Ren, Huachen Jiang, Xin Yu. Sensor deployment for pipeline leakage detection via optimal boundary control strategies. Journal of Industrial & Management Optimization, 2015, 11 (1) : 199-216. doi: 10.3934/jimo.2015.11.199

[14]

Judy Day, Jonathan Rubin, Gilles Clermont. Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation. Mathematical Biosciences & Engineering, 2010, 7 (4) : 739-763. doi: 10.3934/mbe.2010.7.739

[15]

Honglei Xu, Peng Sui, Guanglu Zhou, Louis Caccetta. Dampening bullwhip effect of order-up-to inventory strategies via an optimal control method. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 655-664. doi: 10.3934/naco.2013.3.655

[16]

Dingjun Yao, Kun Fan. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-29. doi: 10.3934/jimo.2017090

[17]

Joanna R. Wares, Joseph J. Crivelli, Chae-Ok Yun, Il-Kyu Choi, Jana L. Gevertz, Peter S. Kim. Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1237-1256. doi: 10.3934/mbe.2015.12.1237

[18]

Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino. Theoretical assessment of the relative incidences of sensitive and resistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences & Engineering, 2014, 11 (4) : 971-993. doi: 10.3934/mbe.2014.11.971

[19]

Shanjing Ren. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1337-1360. doi: 10.3934/mbe.2017069

[20]

Mudassar Imran, Hal L. Smith. A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences & Engineering, 2014, 11 (3) : 547-571. doi: 10.3934/mbe.2014.11.547

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]