2012, 2(3): 547-570. doi: 10.3934/naco.2012.2.547

Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions

1. 

Institut für Angewandte Mathematik, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany

2. 

Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany, Germany

3. 

Institut für Mathematik und Rechneranwendung, Fakultät für Luft- und Raumfahrttechnik, Universität der Bundeswehr, 85577 Neubiberg/München, Germany

Received  July 2011 Revised  May 2012 Published  August 2012

We analyze the Euler discretization to a class of linear-quadratic optimal control problems. First we show convergence of order $h$ for the optimal values of the objective function, where $h$ is the mesh size. Under the additional assumption that the optimal control has bang-bang structure we show that the discrete and the continuous controls coincide except on a set of measure $O(\sqrt{h})$. Under a slightly stronger assumption on the smoothness of the coefficients of the system equation we obtain an error estimate of order $O(h)$.
Citation: Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547
References:
[1]

W. Alt, On the approximation of infinite optimization problems with an application to optimal control problems,, Appl. Math. Optim., 12 (1984), 15. doi: 10.1007/BF01449031.

[2]

W. Alt, Local stability of solutions to differentiable optimization problems in Banach spaces,, J. Optim. Theory Appl., 70 (1991), 443. doi: 10.1007/BF00941297.

[3]

W. Alt, Discretization and mesh-independence of Newton's method for generalized equations,, in, (1997), 1.

[4]

W. Alt, R. Baier, M. Gerdts and F. Lempio, Approximations of linear control problems with bang-bang solutions,, Optimization, (2011). doi: 10.1080/02331934.2011.568619.

[5]

W. Alt and N. Bräutigam, Finite-difference discretizations of quadratic control problems governed by ordinary elliptic differential equations,, Comp. Optim. Appl., 43 (2009), 133. doi: 10.1007/s10589-007-9129-6.

[6]

W. Alt and U. Mackenroth, Convergence of finite element approximations to state constrained convex parabolic boundary control problems,, SIAM J. Control Optim., 27 (1989), 718. doi: 10.1137/0327038.

[7]

W. Alt and M. Seydenschwanz, Regularization and discretization of linear-quadratic control problems,, Control Cybernet., ().

[8]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004. doi: 10.1137/060661867.

[9]

W. J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions,, Computing, 81 (2007), 91. doi: 10.1007/s00607-007-0240-4.

[10]

I. A. Chahma, Set-valued discrete approximation of state-constrained differential inclusions,, Bayreuth. Math. Schr., 67 (2003), 3.

[11]

K. Deckelnick and M. Hinze, A note on the approximation of elliptic control problems with bang-bang controls,, Comp. Optim. Appl., (2010), 10589. doi: 10.1007/s10589-010-9365-z.

[12]

V. Dhamo and F. Tröltzsch, Some aspects of reachability for parabolic boundary control problems with control constraints,, Comp. Optim. Appl., (2010), 10589. doi: 10.1007/s10589-009-9310-1.

[13]

A. L. Dontchev and E. M. Farkhi, Error estimates for discretized differential inclusions,, Computing, 41 (1989), 349. doi: 10.1007/BF02241223.

[14]

A. L. Dontchev and W. W. Hager, Lipschitzian stability in nonlinear control and optimization,, SIAM J. Control Optim., 31 (1993), 569. doi: 10.1137/0331026.

[15]

A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control,, Math. Comp., 70 (2001), 173. doi: 10.1090/S0025-5718-00-01184-4.

[16]

A. L. Dontchev, W. W. Hager and K. Malanowski, Error bounds for Euler approximation of a state and control constrained optimal control problem,, Numer. Funct. Anal. Optim., 21 (2000), 653. doi: 10.1080/01630560008816979.

[17]

I. Ekeland and R. Temam, "Convex Analysis and Variational Problems,", North Holland, (1976).

[18]

U. Felgenhauer, On stability of bang-bang type controls,, SIAM J. Control Optim., 41 (2003), 1843. doi: 10.1137/S0363012901399271.

[19]

U. Felgenhauer, The shooting approach in analyzing bang-bang extremals with simultaneous control switches,, Control Cybernet., 37 (2008), 307.

[20]

U. Felgenhauer, Directional sensitivity differentials for parametric bang-bang control problems,, in, (2010), 264.

[21]

U. Felgenhauer, L. Poggiolini and G. Stefani, Optimality and stability result for bang-bang optimal controls with simple and double switch behaviour,, Control Cybernet., 38 (2009), 1305.

[22]

M. R. Hestenes, "Calculus of Variations and Optimal Control Theory,", Robert E. Krieger Publ. Co., (1980).

[23]

M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case,, Comp. Optim. Appl., 30 (2005), 45. doi: 10.1007/s10589-005-4559-5.

[24]

K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems,, in, (1997), 253.

[25]

H. Maurer, C. Büskens, J.-H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second-order sufficient conditions for bang-bang controls,, Optimal Control Appl. Methods, 26 (2005), 129. doi: 10.1002/oca.756.

[26]

H. Maurer and N. P. Osmolovskii, Second order sufficient conditions for time optimal bang-bang control,, SIAM J. Control Optim., 42 (2004), 2239. doi: 10.1137/S0363012902402578.

[27]

P. Merino, F. Tröltzsch and B. Vexler, Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space,, ESAIM, 44 (2010), 167. doi: 10.1051/m2an/2009045.

[28]

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems,, SIAM J. Contr. Optim., 43 (2004), 970. doi: 10.1137/S0363012903431608.

[29]

B. Sendov and V. A. Popov, "The Averaged Moduli of Smoothness,", Wiley-Interscience, (1988).

[30]

J. Stoer and R. Bulirsch, "Introduction to Numerical Analysis,", Springer-Verlag, (1994).

[31]

V. M. Veliov, On the time-discretization of control systems,, SIAM J. Control Optim., 35 (1997), 1470. doi: 10.1137/S0363012995288987.

[32]

V. M. Veliov, Error analysis of discrete approximations to bang-bang optimal control problems: the linear case,, Control Cybernet., 34 (2005), 967.

[33]

P. R. Wolenski, The exponential formula for the reachable set of a Lipschitz differential inclusion,, SIAM J. Control Optim., 28 (1990), 1148. doi: 10.1137/0328062.

show all references

References:
[1]

W. Alt, On the approximation of infinite optimization problems with an application to optimal control problems,, Appl. Math. Optim., 12 (1984), 15. doi: 10.1007/BF01449031.

[2]

W. Alt, Local stability of solutions to differentiable optimization problems in Banach spaces,, J. Optim. Theory Appl., 70 (1991), 443. doi: 10.1007/BF00941297.

[3]

W. Alt, Discretization and mesh-independence of Newton's method for generalized equations,, in, (1997), 1.

[4]

W. Alt, R. Baier, M. Gerdts and F. Lempio, Approximations of linear control problems with bang-bang solutions,, Optimization, (2011). doi: 10.1080/02331934.2011.568619.

[5]

W. Alt and N. Bräutigam, Finite-difference discretizations of quadratic control problems governed by ordinary elliptic differential equations,, Comp. Optim. Appl., 43 (2009), 133. doi: 10.1007/s10589-007-9129-6.

[6]

W. Alt and U. Mackenroth, Convergence of finite element approximations to state constrained convex parabolic boundary control problems,, SIAM J. Control Optim., 27 (1989), 718. doi: 10.1137/0327038.

[7]

W. Alt and M. Seydenschwanz, Regularization and discretization of linear-quadratic control problems,, Control Cybernet., ().

[8]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler's method for state-constrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004. doi: 10.1137/060661867.

[9]

W. J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions,, Computing, 81 (2007), 91. doi: 10.1007/s00607-007-0240-4.

[10]

I. A. Chahma, Set-valued discrete approximation of state-constrained differential inclusions,, Bayreuth. Math. Schr., 67 (2003), 3.

[11]

K. Deckelnick and M. Hinze, A note on the approximation of elliptic control problems with bang-bang controls,, Comp. Optim. Appl., (2010), 10589. doi: 10.1007/s10589-010-9365-z.

[12]

V. Dhamo and F. Tröltzsch, Some aspects of reachability for parabolic boundary control problems with control constraints,, Comp. Optim. Appl., (2010), 10589. doi: 10.1007/s10589-009-9310-1.

[13]

A. L. Dontchev and E. M. Farkhi, Error estimates for discretized differential inclusions,, Computing, 41 (1989), 349. doi: 10.1007/BF02241223.

[14]

A. L. Dontchev and W. W. Hager, Lipschitzian stability in nonlinear control and optimization,, SIAM J. Control Optim., 31 (1993), 569. doi: 10.1137/0331026.

[15]

A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control,, Math. Comp., 70 (2001), 173. doi: 10.1090/S0025-5718-00-01184-4.

[16]

A. L. Dontchev, W. W. Hager and K. Malanowski, Error bounds for Euler approximation of a state and control constrained optimal control problem,, Numer. Funct. Anal. Optim., 21 (2000), 653. doi: 10.1080/01630560008816979.

[17]

I. Ekeland and R. Temam, "Convex Analysis and Variational Problems,", North Holland, (1976).

[18]

U. Felgenhauer, On stability of bang-bang type controls,, SIAM J. Control Optim., 41 (2003), 1843. doi: 10.1137/S0363012901399271.

[19]

U. Felgenhauer, The shooting approach in analyzing bang-bang extremals with simultaneous control switches,, Control Cybernet., 37 (2008), 307.

[20]

U. Felgenhauer, Directional sensitivity differentials for parametric bang-bang control problems,, in, (2010), 264.

[21]

U. Felgenhauer, L. Poggiolini and G. Stefani, Optimality and stability result for bang-bang optimal controls with simple and double switch behaviour,, Control Cybernet., 38 (2009), 1305.

[22]

M. R. Hestenes, "Calculus of Variations and Optimal Control Theory,", Robert E. Krieger Publ. Co., (1980).

[23]

M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case,, Comp. Optim. Appl., 30 (2005), 45. doi: 10.1007/s10589-005-4559-5.

[24]

K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems,, in, (1997), 253.

[25]

H. Maurer, C. Büskens, J.-H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second-order sufficient conditions for bang-bang controls,, Optimal Control Appl. Methods, 26 (2005), 129. doi: 10.1002/oca.756.

[26]

H. Maurer and N. P. Osmolovskii, Second order sufficient conditions for time optimal bang-bang control,, SIAM J. Control Optim., 42 (2004), 2239. doi: 10.1137/S0363012902402578.

[27]

P. Merino, F. Tröltzsch and B. Vexler, Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space,, ESAIM, 44 (2010), 167. doi: 10.1051/m2an/2009045.

[28]

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems,, SIAM J. Contr. Optim., 43 (2004), 970. doi: 10.1137/S0363012903431608.

[29]

B. Sendov and V. A. Popov, "The Averaged Moduli of Smoothness,", Wiley-Interscience, (1988).

[30]

J. Stoer and R. Bulirsch, "Introduction to Numerical Analysis,", Springer-Verlag, (1994).

[31]

V. M. Veliov, On the time-discretization of control systems,, SIAM J. Control Optim., 35 (1997), 1470. doi: 10.1137/S0363012995288987.

[32]

V. M. Veliov, Error analysis of discrete approximations to bang-bang optimal control problems: the linear case,, Control Cybernet., 34 (2005), 967.

[33]

P. R. Wolenski, The exponential formula for the reachable set of a Lipschitz differential inclusion,, SIAM J. Control Optim., 28 (1990), 1148. doi: 10.1137/0328062.

[1]

Karl Kunisch, Lijuan Wang. The bang-bang property of time optimal controls for the Burgers equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3611-3637. doi: 10.3934/dcds.2014.34.3611

[2]

Karl Kunisch, Lijuan Wang. Bang-bang property of time optimal controls of semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 279-302. doi: 10.3934/dcds.2016.36.279

[3]

Gengsheng Wang, Yubiao Zhang. Decompositions and bang-bang properties. Mathematical Control & Related Fields, 2017, 7 (1) : 73-170. doi: 10.3934/mcrf.2017005

[4]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[5]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[6]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[7]

Helmut Maurer, Tanya Tarnopolskaya, Neale Fulton. Computation of bang-bang and singular controls in collision avoidance. Journal of Industrial & Management Optimization, 2014, 10 (2) : 443-460. doi: 10.3934/jimo.2014.10.443

[8]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[9]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[10]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[11]

M. Soledad Aronna, J. Frédéric Bonnans, Andrei V. Dmitruk, Pablo A. Lotito. Quadratic order conditions for bang-singular extremals. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 511-546. doi: 10.3934/naco.2012.2.511

[12]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[13]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[14]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

[15]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations & Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[16]

Max Gunzburger, Sung-Dae Yang, Wenxiang Zhu. Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 569-587. doi: 10.3934/dcdsb.2007.8.569

[17]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

[18]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[19]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[20]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (13)

[Back to Top]