2011, 1(2): 225-244. doi: 10.3934/naco.2011.1.225

A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction

1. 

Lehrstuhl 2 für Angewandte Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen

Received  October 2010 Revised  January 2011 Published  June 2011

We study the isothermal Euler equations with friction and consider non-stationary solutions locally around a stationary subcritical state on a finite time interval. The considered control system is a quasilinear hyperbolic system with a source term. For the corresponding initial-boundary value problem we prove the existence of a continuously differentiable solution and present a method of boundary feedback stabilization. We introduce a Lyapunov function which is a weighted and squared $H^1$-norm of the difference between the non-stationary and the stationary state. We develop boundary feedback conditions which guarantee that the Lyapunov function and the $H^1$-norm of the difference between the non-stationary and the stationary state decay exponentially with time. This allows us also to prove exponential estimates for the $C^0$- and $C^1$-norm.
Citation: Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225
References:
[1]

H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization,", Society for Industrial and Applied Mathematics and Mathematical Programming Society, (2006). Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295. Google Scholar

[3]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. Google Scholar

[4]

N. Bedjaoui, E. Weyer and G. Bastin, Methods for the localization of a leak in open water channels,, Netw. Heterog. Media, 4 (2009), 189. doi: 10.3934/nhm.2009.4.189. Google Scholar

[5]

J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines,, Research Report available at Centre de recherche INRIA Saclay, (2009). Google Scholar

[6]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032. doi: 10.1137/080716372. Google Scholar

[7]

J. M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2. doi: 10.1109/TAC.2006.887903. Google Scholar

[8]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,, Netw. Heterog. Media, 5 (2010), 691. doi: 10.3934/nhm.2010.5.691. Google Scholar

[9]

M. Gugat, Optimal nodal control of networked hyperbolic systems: evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9. Google Scholar

[10]

M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations,, IMA J. Math. Control Inform., 27 (2010), 189. doi: 10.1093/imamci/dnq007. Google Scholar

[11]

M. Gugat and M. Dick, Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction,, submitted., (). Google Scholar

[12]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., 17 (2011), 28. doi: 10.1051/cocv/2009035. Google Scholar

[13]

M. Gugat and M. Sigalotti, Stars of vibrating strings: switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299. doi: 10.3934/nhm.2010.5.299. Google Scholar

[14]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845. Google Scholar

[15]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 733. doi: doi:10.3934/nhm.2007.2.733. Google Scholar

[16]

T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems,", American Institute of Mathematical Sciences, (2010). Google Scholar

[17]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243. doi: 10.3934/dcds.2010.28.243. Google Scholar

[18]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559. doi: 10.3934/dcdss.2009.2.559. Google Scholar

[19]

A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987). Google Scholar

[20]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal transient models,, Technical Report available at Warsaw University of Technology, (1998). Google Scholar

[21]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41. doi: 10.1016/S1385-8947(00)00194-7. Google Scholar

[22]

M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345. doi: 10.1016/j.cam.2006.04.018. Google Scholar

[23]

M. Tucsnak and G. Weiss, "Observation and Control for Operator Semigroups,", Birkhäuser, (2009). doi: 10.1007/978-3-7643-8994-9. Google Scholar

[24]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks,, SIAM J. Control Optim., 48 (2009), 2771. doi: 10.1137/080733590. Google Scholar

[25]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chin. Ann. Math., 27B (2006), 643. doi: 10.1007/s11401-005-0520-2. Google Scholar

show all references

References:
[1]

H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization,", Society for Industrial and Applied Mathematics and Mathematical Programming Society, (2006). Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295. Google Scholar

[3]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. Google Scholar

[4]

N. Bedjaoui, E. Weyer and G. Bastin, Methods for the localization of a leak in open water channels,, Netw. Heterog. Media, 4 (2009), 189. doi: 10.3934/nhm.2009.4.189. Google Scholar

[5]

J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines,, Research Report available at Centre de recherche INRIA Saclay, (2009). Google Scholar

[6]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032. doi: 10.1137/080716372. Google Scholar

[7]

J. M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2. doi: 10.1109/TAC.2006.887903. Google Scholar

[8]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,, Netw. Heterog. Media, 5 (2010), 691. doi: 10.3934/nhm.2010.5.691. Google Scholar

[9]

M. Gugat, Optimal nodal control of networked hyperbolic systems: evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9. Google Scholar

[10]

M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations,, IMA J. Math. Control Inform., 27 (2010), 189. doi: 10.1093/imamci/dnq007. Google Scholar

[11]

M. Gugat and M. Dick, Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction,, submitted., (). Google Scholar

[12]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., 17 (2011), 28. doi: 10.1051/cocv/2009035. Google Scholar

[13]

M. Gugat and M. Sigalotti, Stars of vibrating strings: switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299. doi: 10.3934/nhm.2010.5.299. Google Scholar

[14]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845. Google Scholar

[15]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 733. doi: doi:10.3934/nhm.2007.2.733. Google Scholar

[16]

T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems,", American Institute of Mathematical Sciences, (2010). Google Scholar

[17]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243. doi: 10.3934/dcds.2010.28.243. Google Scholar

[18]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559. doi: 10.3934/dcdss.2009.2.559. Google Scholar

[19]

A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987). Google Scholar

[20]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal transient models,, Technical Report available at Warsaw University of Technology, (1998). Google Scholar

[21]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41. doi: 10.1016/S1385-8947(00)00194-7. Google Scholar

[22]

M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345. doi: 10.1016/j.cam.2006.04.018. Google Scholar

[23]

M. Tucsnak and G. Weiss, "Observation and Control for Operator Semigroups,", Birkhäuser, (2009). doi: 10.1007/978-3-7643-8994-9. Google Scholar

[24]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks,, SIAM J. Control Optim., 48 (2009), 2771. doi: 10.1137/080733590. Google Scholar

[25]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chin. Ann. Math., 27B (2006), 643. doi: 10.1007/s11401-005-0520-2. Google Scholar

[1]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

[2]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[3]

Wael Bahsoun, Benoît Saussol. Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6657-6668. doi: 10.3934/dcds.2016089

[4]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations & Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[5]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[6]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[7]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[8]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Robustness of time-dependent attractors in H1-norm for nonlocal problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1011-1036. doi: 10.3934/dcdsb.2018140

[9]

Mikko Salo. Stability for solutions of wave equations with $C^{1,1}$ coefficients. Inverse Problems & Imaging, 2007, 1 (3) : 537-556. doi: 10.3934/ipi.2007.1.537

[10]

Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems & Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093

[11]

Ben Green, Terence Tao, Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Electronic Research Announcements, 2011, 18: 69-90. doi: 10.3934/era.2011.18.69

[12]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks & Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[13]

Ambroise Vest. On the structural properties of an efficient feedback law. Evolution Equations & Control Theory, 2013, 2 (3) : 543-556. doi: 10.3934/eect.2013.2.543

[14]

Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control & Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013

[15]

Shui-Hung Hou, Qing-Xu Yan. Nonlinear locally distributed feedback stabilization. Journal of Industrial & Management Optimization, 2008, 4 (1) : 67-79. doi: 10.3934/jimo.2008.4.67

[16]

Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014

[17]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[18]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[19]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 31-54. doi: 10.3934/dcds.2003.9.31

[20]

Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2019061

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]