• Previous Article
    Web services recommendation leveraging semantic similarity computing
  • MFC Home
  • This Issue
  • Next Article
    How convolutional neural networks see the world --- A survey of convolutional neural network visualization methods
May 2018, 1(2): 121-147. doi: 10.3934/mfc.2018007

A survey on security and privacy issues of blockchain technology

Kennesaw State University, Marietta, GA 30060, USA

* Corresponding author: Meng Han

Received  December 2017 Revised  February 2018 Published  May 2018

Blockchain is gaining traction and can be termed as one of the furthermost prevalent topics nowadays. Although critics question about its scalability, security, and sustainability, it has already transformed many individuals' lifestyle in some areas due to its inordinate influence on industries and businesses. Granting that the features of blockchain technology guarantee more reliable and expedient services, it is important to consider the security and privacy issues and challenges behind the innovative technology. The spectrum of blockchain applications range from financial, healthcare, automobile, risk management, Internet of things (IoT) to public and social services. Several studies focus on utilizing the blockchain data structure in various applications. However, a comprehensive survey on technical and applications perspective has not yet been accomplished. In this paper, we try to conduct a comprehensive survey on the blockchain technology by discussing its structure to different consensus algorithms as well as the challenges and opportunities from the prospective of security and privacy of data in blockchains. Furthermore, we delve into future trends the blockchain technology can adapt in the years to come.

Index Terms- Blockchains, Future Trends of Blockchains, Security, Privacy

Citation: Archana Prashanth Joshi, Meng Han, Yan Wang. A survey on security and privacy issues of blockchain technology. Mathematical Foundations of Computing, 2018, 1 (2) : 121-147. doi: 10.3934/mfc.2018007
References:
[1]

Data aggregation scheduling in probabilistic wireless networks with cognitive radio capability, in 2016 IEEE Global Communications Conference (GLOBECOM), 2016, 1–6.

[2]

Security implications of blockchain cloud with analysis of block withholding attack., 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 458.

[3]

C. Ai, M. Han, J. Wang and M. Yan, An efficient social event invitation framework based on historical data of smart devices, in 2016 IEEE International Conferences on Social Computing and Networking (SocialCom), IEEE, 2016, 229–236. doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.44.

[4]

A. Back et al., Hashcash-a denial of service counter-measure.

[5]

N. Barnas, Blockchains in national defense: Trustworthy systems in a trustless world, Blue Horizons Fellowship, Air University, Maxwell Air Force Base, Alabama.

[6]

Z. CaiZ. HeX. Guan and Y. Li, Collective data-sanitization for preventing sensitive information inference attacks in social networks, IEEE Transactions on Dependable and Secure Computing, (2016), 1-1. doi: 10.1109/TDSC.2016.2613521.

[7]

N. CapursoT. SongW. ChengJ. Yu and X. Cheng, An android-based mechanism for energy efficient localization depending on indoor/outdoor context, IEEE Internet of Things Journal, 4 (2017), 299-307. doi: 10.1109/JIOT.2016.2553100.

[8]

F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos and X. Rong, Data mining for the internet of things: Literature review and challenges International Journal of Distributed Sensor Networks, 11 (2015), 431047. doi: 10.1155/2015/431047.

[9]

A. Dorri, S. S. Kanhere and R. Jurdak, Blockchain in internet of things: challenges and solutions, arXiv preprint, arXiv: 1608.05187.

[10]

A. DorriM. StegerS. S. Kanhere and R. Jurdak, Blockchain: A distributed solution to automotive security and privacy, IEEE Communications Magazine, 55 (2017), 119-125. doi: 10.1109/MCOM.2017.1700879.

[11]

Z. Duan, M. Yan, Z. Cai, X. Wang, M. Han and Y. Li, Truthful incentive mechanisms for social cost minimization in mobile crowdsourcing systems Sensors, 16 (2016), p481. doi: 10.3390/s16040481.

[12]

A. S. Elmaghraby and M. M. Losavio, Cyber security challenges in smart cities: Safety, security and privacy, Journal of Advanced Research, 5 (2014), 491-497. doi: 10.1016/j.jare.2014.02.006.

[13]

J. A. GarayA. Kiayias and N. Leonardos, The bitcoin backbone protocol: Analysis and applications., EUROCRYPT(2), 9057 (2015), 281-310. doi: 10.1007/978-3-662-46803-6_10.

[14]

F. Gierschner, Bitcoin and beyond.

[15]

M. Han, Z. Duan and Y. Li, Privacy issues for transportation cyber physical systems, in Secure and Trustworthy Transportation Cyber-Physical Systems, Springer, Singapore, 2017, 67–86. doi: 10.1007/978-981-10-3892-1_4.

[16]

M. Han, J. Li, Z. Cai and Q. Han, Privacy reserved influence maximization in gps-enabled cyber-physical and online social networks, in 2016 IEEE International Conferences on Social Computing and Networking (SocialCom), IEEE, 2016, 284–292. doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.51.

[17]

M. Han, M. Yan, J. Li, S. Ji and Y. Li, Generating uncertain networks based on historical network snapshots, in International Computing and Combinatorics Conference, Springer, Berlin, Heidelberg, 2013, 747–758. doi: 10.1007/978-3-642-38768-5_68.

[18]

M. HanM. YanJ. LiS. Ji and Y. Li, Neighborhood-based uncertainty generation in social networks, Journal of Combinatorial Optimization, 28 (2014), 561-576. doi: 10.1007/s10878-013-9684-y.

[19]

Z. HeZ. Cai and J. Yu, Latent-data privacy preserving with customized data utility for social network data, IEEE Transactions on Vehicular Technology, 67 (2018), 665-673. doi: 10.1109/TVT.2017.2738018.

[20]

Z. HeZ. CaiJ. YuX. WangY. Sun and Y. Li, Cost-efficient strategies for restraining rumor spreading in mobile social networks, IEEE Transactions on Vehicular Technology, 66 (2017), 2789-2800. doi: 10.1109/TVT.2016.2585591.

[21]

H. Heinecke, K. -P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J. -L. Maté, K. Nishikawa and T. Scharnhorst, Automotive Open System Architecture-An Industry-Wide Initiative to Manage the Complexity of Emerging Automotive E/E-Architectures, Technical report, SAE Technical Paper, 2004.

[22]

S. Ji, Z. Cai, M. Han and R. Beyah, Whitespace measurement and virtual backbone construction for cognitive radio networks: From the social perspective, in Sensing, Communication, and Networking (SECON), 2015 12th Annual IEEE International Conference on, IEEE, 2015, 435–443. doi: 10.1109/SAHCN.2015.7338344.

[23]

P. Jin Ho and P. Jong Hyuk, Blockchain security in cloud computing: Use cases, challenges, and solutions., Symmetry (20738994), 9 (2017), 1-13.

[24]

A. Kiayias and G. Panagiotakos, Speed-security tradeoffs in blockchain protocols, IACR Cryptology ePrint Archive, 2015 (2015), 1019.

[25]

V. King and J. Saia, Scalable byzantine computation, ACM SIGACT News, 41 (2010), 89-104. doi: 10.1145/1855118.1855136.

[26]

K. Korpela, J. Hallikas and T. Dahlberg, Digital supply chain transformation toward blockchain integration, in Proceedings of the 50th Hawaii International Conference on System Sciences, 2017, 10pp. doi: 10.24251/HICSS.2017.506.

[27]

R. Kotla, L. Alvisi, M. Dahlin, A. Clement and E. Wong, Zyzzyva: Speculative byzantine fault tolerance, in ACM SIGOPS Operating Systems Review, ACM, 41 (2007), 45–58. doi: 10.1145/1294261.1294267.

[28]

D. Larimer, Delegated proof-of-stake white paper, 2014.

[29]

D. Larimer, Transactions as proof-of-stake, 2013.

[30]

J. LiZ. CaiJ. WangM. Han and Y. Li, Truthful incentive mechanisms for geographical position conflicting mobile crowdsensing systems, IEEE Transactions on Computational Social Systems, (2018), 1-11. doi: 10.1109/TCSS.2018.2797225.

[31]

X. Li, P. Jiang, T. Chen, X. Luo and Q. Wen, A survey on the security of blockchain systems, Future Generation Computer Systems (2017), URL http://www.sciencedirect.com/science/article/pii/S0167739X17318332.

10.1016/j.future.2017.08.020

[32]

X. Liang, J. Zhao, S. Shetty and D. Li, Towards data assurance and resilience in iot using blockchain, in Military Communications Conference (MILCOM), MILCOM 2017-2017 IEEE, IEEE, 2017, 261–266. doi: 10.1109/MILCOM.2017.8170858.

[33]

I.-C. Lin and T.-C. Liao, A survey of blockchain security issues and challenges., IJ Network Security, 19 (2017), 653-659.

[34]

L. A. Linn and M. B. Koo, Blockchain for health data and its potential use in health it and health care related research, in ONC/NIST Use of Blockchain for Healthcare and Research Workshop. Gaithersburg, Maryland, United States: ONC/NIST, 2016.

[35]

L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert and P. Saxena, Scp: A computationally-scalable byzantine consensus protocol for blockchains., IACR Cryptology ePrint Archive, 2015 (2015), 1168.

[36]

D. Mazieres, The stellar consensus protocol: A federated model for internet-level consensus, Stellar Development Foundation.

[37]

J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas, F. Daniel, S. Debois, C. D. Ciccio, M. Dumas, S. Dustdar et al., Blockchains for business process management-challenges and opportunities, ACM Transactions on Management Information Systems (TMIS), 9 (2018), Article No. 4. doi: 10.1145/3183367.

[38]

M. Moser, Anonymity of bitcoin transactions.

[39]

M. Pilkington, Blockchain technology: Principles and applications, Browser Download This Paper.

[40]

M. Steger, C. Boano, M. Karner, J. Hillebrand, W. Rom and K. Römer, Secup: Secure and efficient wireless software updates for vehicles, in Digital System Design (DSD), 2016 Euromicro Conference on, IEEE, 2016, 628–636. doi: 10.1109/DSD.2016.11.

[41]

K. Suankaewmanee, D. T. Hoang, D. Niyato, S. Sawadsitang, P. Wang and Z. Han, Performance analysis and application of mobile blockchain, arXiv preprint, arXiv: 1712.03659.

[42]

T. Swanson, Consensus-as-a-service: A brief report on the emergence of permissioned, distributed ledger systems, Report, available online, Apr.

[43]

D. Tapscott and A. Tapscott, Blockchain.

[44]

W. Tirenin and D. Faatz, A concept for strategic cyber defense, in Military Communications Conference Proceedings, 1999. MILCOM 1999. IEEE, vol. 1, IEEE, 1999, 458–463. doi: 10.1109/MILCOM.1999.822725.

[45]

F. Tschorsch and B. Scheuermann, Bitcoin and beyond: A technical survey on decentralized digital currencies, IEEE Communications Surveys & Tutorials, 18 (2016), 2084-2123. doi: 10.1109/COMST.2016.2535718.

[46]

D. Verma, N. Desai, A. Preece and I. J. Taylor, A blockchain based architecture for asset management in coalition operations, SPIE, 2017.

[47]

V. Vishumurthy, S. Chandrakumar and E. G. Sirer, Karma: A secure economic framework for peer-to-peer resource sharing, in Proceedings of the 2003 Workshop on Economics of Peer-to-Peer Systems, Berkeley CA, 2003.

[48]

M. Vukolić, The quest for scalable blockchain fabric: Proof-of-work vs. bft replication, in International Workshop on Open Problems in Network Security, Springer, 2015, 112–125.

[49]

Y. WangZ. CaiX. TongY. Gao and G. Yin, Truthful incentive mechanism with location privacy-preserving for mobile crowdsourcing systems, Computer Networks, 135 (2018), 32-43. doi: 10.1016/j.comnet.2018.02.008.

[50]

G. Wood, Ethereum: A secure decentralised generalised transaction ledger, Ethereum Project Yellow Paper, 151 (2014), 1-32.

[51]

Z. Xiong, S. Feng, D. Niyato, P. Wang and Z. Han, Edge computing resource management and pricing for mobile blockchain, arXiv preprint, arXiv: 1710.01567.

[52]

X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso and P. Rimba, A taxonomy of blockchain-based systems for architecture design, in Software Architecture (ICSA), 2017 IEEE International Conference on, IEEE, 2017, 243–252.

[53]

L. ZhangZ. Cai and X. Wang, Fakemask: a novel privacy preserving approach for smartphones, IEEE Transactions on Network and Service Management, 13 (2016), 335-348.

[54]

X. Zheng, Z. Cai, J. Li and H. Gao, Location-privacy-aware review publication mechanism for local business service systems, in INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, IEEE, 2017, 1–9.

[55]

X. Zheng, Z. Cai and Y. Li, Data linkage in smart iot systems: A consideration from privacy perspective., IEEE Communications Magazine.

[56]

X. Zheng, G. Luo and Z. Cai, A fair mechanism for private data publication in online social networks, IEEE Transactions on Network Science and Engineering.

[57]

Z. Zheng, S. Xie, H. -N. Dai and H. Wang, Blockchain challenges and opportunities: A survey, Work Pap.

[58]

Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, An overview of blockchain technology: Architecture, consensus, and future trends, in Big Data (BigData Congress), 2017 IEEE International Congress on, IEEE, 2017, 557–564.

[59]

G. Zyskind, O. Nathan et al., Decentralizing privacy: Using blockchain to protect personal data, in Security and Privacy Workshops (SPW), 2015 IEEE, IEEE, 2015, 180–184.

show all references

References:
[1]

Data aggregation scheduling in probabilistic wireless networks with cognitive radio capability, in 2016 IEEE Global Communications Conference (GLOBECOM), 2016, 1–6.

[2]

Security implications of blockchain cloud with analysis of block withholding attack., 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 458.

[3]

C. Ai, M. Han, J. Wang and M. Yan, An efficient social event invitation framework based on historical data of smart devices, in 2016 IEEE International Conferences on Social Computing and Networking (SocialCom), IEEE, 2016, 229–236. doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.44.

[4]

A. Back et al., Hashcash-a denial of service counter-measure.

[5]

N. Barnas, Blockchains in national defense: Trustworthy systems in a trustless world, Blue Horizons Fellowship, Air University, Maxwell Air Force Base, Alabama.

[6]

Z. CaiZ. HeX. Guan and Y. Li, Collective data-sanitization for preventing sensitive information inference attacks in social networks, IEEE Transactions on Dependable and Secure Computing, (2016), 1-1. doi: 10.1109/TDSC.2016.2613521.

[7]

N. CapursoT. SongW. ChengJ. Yu and X. Cheng, An android-based mechanism for energy efficient localization depending on indoor/outdoor context, IEEE Internet of Things Journal, 4 (2017), 299-307. doi: 10.1109/JIOT.2016.2553100.

[8]

F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos and X. Rong, Data mining for the internet of things: Literature review and challenges International Journal of Distributed Sensor Networks, 11 (2015), 431047. doi: 10.1155/2015/431047.

[9]

A. Dorri, S. S. Kanhere and R. Jurdak, Blockchain in internet of things: challenges and solutions, arXiv preprint, arXiv: 1608.05187.

[10]

A. DorriM. StegerS. S. Kanhere and R. Jurdak, Blockchain: A distributed solution to automotive security and privacy, IEEE Communications Magazine, 55 (2017), 119-125. doi: 10.1109/MCOM.2017.1700879.

[11]

Z. Duan, M. Yan, Z. Cai, X. Wang, M. Han and Y. Li, Truthful incentive mechanisms for social cost minimization in mobile crowdsourcing systems Sensors, 16 (2016), p481. doi: 10.3390/s16040481.

[12]

A. S. Elmaghraby and M. M. Losavio, Cyber security challenges in smart cities: Safety, security and privacy, Journal of Advanced Research, 5 (2014), 491-497. doi: 10.1016/j.jare.2014.02.006.

[13]

J. A. GarayA. Kiayias and N. Leonardos, The bitcoin backbone protocol: Analysis and applications., EUROCRYPT(2), 9057 (2015), 281-310. doi: 10.1007/978-3-662-46803-6_10.

[14]

F. Gierschner, Bitcoin and beyond.

[15]

M. Han, Z. Duan and Y. Li, Privacy issues for transportation cyber physical systems, in Secure and Trustworthy Transportation Cyber-Physical Systems, Springer, Singapore, 2017, 67–86. doi: 10.1007/978-981-10-3892-1_4.

[16]

M. Han, J. Li, Z. Cai and Q. Han, Privacy reserved influence maximization in gps-enabled cyber-physical and online social networks, in 2016 IEEE International Conferences on Social Computing and Networking (SocialCom), IEEE, 2016, 284–292. doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.51.

[17]

M. Han, M. Yan, J. Li, S. Ji and Y. Li, Generating uncertain networks based on historical network snapshots, in International Computing and Combinatorics Conference, Springer, Berlin, Heidelberg, 2013, 747–758. doi: 10.1007/978-3-642-38768-5_68.

[18]

M. HanM. YanJ. LiS. Ji and Y. Li, Neighborhood-based uncertainty generation in social networks, Journal of Combinatorial Optimization, 28 (2014), 561-576. doi: 10.1007/s10878-013-9684-y.

[19]

Z. HeZ. Cai and J. Yu, Latent-data privacy preserving with customized data utility for social network data, IEEE Transactions on Vehicular Technology, 67 (2018), 665-673. doi: 10.1109/TVT.2017.2738018.

[20]

Z. HeZ. CaiJ. YuX. WangY. Sun and Y. Li, Cost-efficient strategies for restraining rumor spreading in mobile social networks, IEEE Transactions on Vehicular Technology, 66 (2017), 2789-2800. doi: 10.1109/TVT.2016.2585591.

[21]

H. Heinecke, K. -P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J. -L. Maté, K. Nishikawa and T. Scharnhorst, Automotive Open System Architecture-An Industry-Wide Initiative to Manage the Complexity of Emerging Automotive E/E-Architectures, Technical report, SAE Technical Paper, 2004.

[22]

S. Ji, Z. Cai, M. Han and R. Beyah, Whitespace measurement and virtual backbone construction for cognitive radio networks: From the social perspective, in Sensing, Communication, and Networking (SECON), 2015 12th Annual IEEE International Conference on, IEEE, 2015, 435–443. doi: 10.1109/SAHCN.2015.7338344.

[23]

P. Jin Ho and P. Jong Hyuk, Blockchain security in cloud computing: Use cases, challenges, and solutions., Symmetry (20738994), 9 (2017), 1-13.

[24]

A. Kiayias and G. Panagiotakos, Speed-security tradeoffs in blockchain protocols, IACR Cryptology ePrint Archive, 2015 (2015), 1019.

[25]

V. King and J. Saia, Scalable byzantine computation, ACM SIGACT News, 41 (2010), 89-104. doi: 10.1145/1855118.1855136.

[26]

K. Korpela, J. Hallikas and T. Dahlberg, Digital supply chain transformation toward blockchain integration, in Proceedings of the 50th Hawaii International Conference on System Sciences, 2017, 10pp. doi: 10.24251/HICSS.2017.506.

[27]

R. Kotla, L. Alvisi, M. Dahlin, A. Clement and E. Wong, Zyzzyva: Speculative byzantine fault tolerance, in ACM SIGOPS Operating Systems Review, ACM, 41 (2007), 45–58. doi: 10.1145/1294261.1294267.

[28]

D. Larimer, Delegated proof-of-stake white paper, 2014.

[29]

D. Larimer, Transactions as proof-of-stake, 2013.

[30]

J. LiZ. CaiJ. WangM. Han and Y. Li, Truthful incentive mechanisms for geographical position conflicting mobile crowdsensing systems, IEEE Transactions on Computational Social Systems, (2018), 1-11. doi: 10.1109/TCSS.2018.2797225.

[31]

X. Li, P. Jiang, T. Chen, X. Luo and Q. Wen, A survey on the security of blockchain systems, Future Generation Computer Systems (2017), URL http://www.sciencedirect.com/science/article/pii/S0167739X17318332.

10.1016/j.future.2017.08.020

[32]

X. Liang, J. Zhao, S. Shetty and D. Li, Towards data assurance and resilience in iot using blockchain, in Military Communications Conference (MILCOM), MILCOM 2017-2017 IEEE, IEEE, 2017, 261–266. doi: 10.1109/MILCOM.2017.8170858.

[33]

I.-C. Lin and T.-C. Liao, A survey of blockchain security issues and challenges., IJ Network Security, 19 (2017), 653-659.

[34]

L. A. Linn and M. B. Koo, Blockchain for health data and its potential use in health it and health care related research, in ONC/NIST Use of Blockchain for Healthcare and Research Workshop. Gaithersburg, Maryland, United States: ONC/NIST, 2016.

[35]

L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert and P. Saxena, Scp: A computationally-scalable byzantine consensus protocol for blockchains., IACR Cryptology ePrint Archive, 2015 (2015), 1168.

[36]

D. Mazieres, The stellar consensus protocol: A federated model for internet-level consensus, Stellar Development Foundation.

[37]

J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas, F. Daniel, S. Debois, C. D. Ciccio, M. Dumas, S. Dustdar et al., Blockchains for business process management-challenges and opportunities, ACM Transactions on Management Information Systems (TMIS), 9 (2018), Article No. 4. doi: 10.1145/3183367.

[38]

M. Moser, Anonymity of bitcoin transactions.

[39]

M. Pilkington, Blockchain technology: Principles and applications, Browser Download This Paper.

[40]

M. Steger, C. Boano, M. Karner, J. Hillebrand, W. Rom and K. Römer, Secup: Secure and efficient wireless software updates for vehicles, in Digital System Design (DSD), 2016 Euromicro Conference on, IEEE, 2016, 628–636. doi: 10.1109/DSD.2016.11.

[41]

K. Suankaewmanee, D. T. Hoang, D. Niyato, S. Sawadsitang, P. Wang and Z. Han, Performance analysis and application of mobile blockchain, arXiv preprint, arXiv: 1712.03659.

[42]

T. Swanson, Consensus-as-a-service: A brief report on the emergence of permissioned, distributed ledger systems, Report, available online, Apr.

[43]

D. Tapscott and A. Tapscott, Blockchain.

[44]

W. Tirenin and D. Faatz, A concept for strategic cyber defense, in Military Communications Conference Proceedings, 1999. MILCOM 1999. IEEE, vol. 1, IEEE, 1999, 458–463. doi: 10.1109/MILCOM.1999.822725.

[45]

F. Tschorsch and B. Scheuermann, Bitcoin and beyond: A technical survey on decentralized digital currencies, IEEE Communications Surveys & Tutorials, 18 (2016), 2084-2123. doi: 10.1109/COMST.2016.2535718.

[46]

D. Verma, N. Desai, A. Preece and I. J. Taylor, A blockchain based architecture for asset management in coalition operations, SPIE, 2017.

[47]

V. Vishumurthy, S. Chandrakumar and E. G. Sirer, Karma: A secure economic framework for peer-to-peer resource sharing, in Proceedings of the 2003 Workshop on Economics of Peer-to-Peer Systems, Berkeley CA, 2003.

[48]

M. Vukolić, The quest for scalable blockchain fabric: Proof-of-work vs. bft replication, in International Workshop on Open Problems in Network Security, Springer, 2015, 112–125.

[49]

Y. WangZ. CaiX. TongY. Gao and G. Yin, Truthful incentive mechanism with location privacy-preserving for mobile crowdsourcing systems, Computer Networks, 135 (2018), 32-43. doi: 10.1016/j.comnet.2018.02.008.

[50]

G. Wood, Ethereum: A secure decentralised generalised transaction ledger, Ethereum Project Yellow Paper, 151 (2014), 1-32.

[51]

Z. Xiong, S. Feng, D. Niyato, P. Wang and Z. Han, Edge computing resource management and pricing for mobile blockchain, arXiv preprint, arXiv: 1710.01567.

[52]

X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso and P. Rimba, A taxonomy of blockchain-based systems for architecture design, in Software Architecture (ICSA), 2017 IEEE International Conference on, IEEE, 2017, 243–252.

[53]

L. ZhangZ. Cai and X. Wang, Fakemask: a novel privacy preserving approach for smartphones, IEEE Transactions on Network and Service Management, 13 (2016), 335-348.

[54]

X. Zheng, Z. Cai, J. Li and H. Gao, Location-privacy-aware review publication mechanism for local business service systems, in INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, IEEE, 2017, 1–9.

[55]

X. Zheng, Z. Cai and Y. Li, Data linkage in smart iot systems: A consideration from privacy perspective., IEEE Communications Magazine.

[56]

X. Zheng, G. Luo and Z. Cai, A fair mechanism for private data publication in online social networks, IEEE Transactions on Network Science and Engineering.

[57]

Z. Zheng, S. Xie, H. -N. Dai and H. Wang, Blockchain challenges and opportunities: A survey, Work Pap.

[58]

Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, An overview of blockchain technology: Architecture, consensus, and future trends, in Big Data (BigData Congress), 2017 IEEE International Congress on, IEEE, 2017, 557–564.

[59]

G. Zyskind, O. Nathan et al., Decentralizing privacy: Using blockchain to protect personal data, in Security and Privacy Workshops (SPW), 2015 IEEE, IEEE, 2015, 180–184.

Figure 1.  Illustration of Blockchain Elements
Figure 2.  Blockchain Structure
Figure 3.  Consensus Algorithms
Figure 4.  Types of Blockchains
Figure 5.  Pattern Representation of Blockchain Types
Figure 6.  Aspects of Blockchain
Figure 7.  Areas of Application of the Blockchain Technology
Figure 8.  Blockchain in Financial Transactions
Figure 9.  Blockchain in Healthcare Transactions
Figure 10.  Blockchain in Internet of Things
Figure 11.  Blockchain in Mobile Applications
Figure 12.  Blockchain in Automobile Applications
[1]

Shuichiro Senda, Hiroyuki Masuyama, Shoji Kasahara. A stochastic fluid model for on-demand peer-to-peer streaming services. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 611-626. doi: 10.3934/naco.2011.1.611

[2]

Kazuhiko Kuraya, Hiroyuki Masuyama, Shoji Kasahara. Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 593-610. doi: 10.3934/naco.2011.1.593

[3]

Sho Nanao, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Queueing analysis of data block synchronization mechanism in peer-to-peer based video streaming system. Journal of Industrial & Management Optimization, 2011, 7 (3) : 699-716. doi: 10.3934/jimo.2011.7.699

[4]

Colleen M. Swanson, Douglas R. Stinson. Extended combinatorial constructions for peer-to-peer user-private information retrieval. Advances in Mathematics of Communications, 2012, 6 (4) : 479-497. doi: 10.3934/amc.2012.6.479

[5]

Baojun Song, Melissa Castillo-Garsow, Karen R. Ríos-Soto, Marcin Mejran, Leilani Henso, Carlos Castillo-Chavez. Raves, clubs and ecstasy: the impact of peer pressure. Mathematical Biosciences & Engineering, 2006, 3 (1) : 249-266. doi: 10.3934/mbe.2006.3.249

[6]

Neal Koblitz, Alfred Menezes. Another look at security definitions. Advances in Mathematics of Communications, 2013, 7 (1) : 1-38. doi: 10.3934/amc.2013.7.1

[7]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[8]

Horst R. Thieme. Distributed susceptibility: A challenge to persistence theory in infectious disease models. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 865-882. doi: 10.3934/dcdsb.2009.12.865

[9]

Ruinian Li, Yinhao Xiao, Cheng Zhang, Tianyi Song, Chunqiang Hu. Cryptographic algorithms for privacy-preserving online applications. Mathematical Foundations of Computing, 2018, 1 (4) : 311-330. doi: 10.3934/mfc.2018015

[10]

Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1457-1470. doi: 10.3934/dcdss.2019100

[11]

Philip Lafrance, Alfred Menezes. On the security of the WOTS-PRF signature scheme. Advances in Mathematics of Communications, 2019, 13 (1) : 185-193. doi: 10.3934/amc.2019012

[12]

Yunmei Lu, Mingyuan Yan, Meng Han, Qingliang Yang, Yanqing Zhang. Privacy preserving feature selection and Multiclass Classification for horizontally distributed data. Mathematical Foundations of Computing, 2018, 1 (4) : 331-348. doi: 10.3934/mfc.2018016

[13]

Jian Mao, Qixiao Lin, Jingdong Bian. Application of learning algorithms in smart home IoT system security. Mathematical Foundations of Computing, 2018, 1 (1) : 63-76. doi: 10.3934/mfc.2018004

[14]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[15]

Chengtao Yong, Yan Huo, Chunqiang Hu, Yanfei Lu, Guanlin Jing. A real-time aggregate data publishing scheme with adaptive ω-event differential privacy. Mathematical Foundations of Computing, 2018, 1 (3) : 295-309. doi: 10.3934/mfc.2018014

[16]

Zongmin Li, Jiuping Xu, Wenjing Shen, Benjamin Lev, Xiao Lei. Bilevel multi-objective construction site security planning with twofold random phenomenon. Journal of Industrial & Management Optimization, 2015, 11 (2) : 595-617. doi: 10.3934/jimo.2015.11.595

[17]

Jose-Luis Roca-Gonzalez. Designing dynamical systems for security and defence network knowledge management. A case of study: Airport bird control falconers organizations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1311-1329. doi: 10.3934/dcdss.2015.8.1311

[18]

Shuai Ren, Tao Zhang, Fangxia Shi, Zongzong Lou. The application of improved-DAA for the vehicle network node security in single- and multi-trusted domain. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1301-1309. doi: 10.3934/dcdss.2015.8.1301

[19]

Yang Lu, Jiguo Li. Forward-secure identity-based encryption with direct chosen-ciphertext security in the standard model. Advances in Mathematics of Communications, 2017, 11 (1) : 161-177. doi: 10.3934/amc.2017010

 Impact Factor: 

Metrics

  • PDF downloads (585)
  • HTML views (2275)
  • Cited by (0)

Other articles
by authors

[Back to Top]