doi: 10.3934/mcrf.2019011

Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential

Facultad Ingeniería, Universidad de Deusto, Avda Universidades 24, 48007 Bilbao, Basque Country, Spain

Received  May 2016 Revised  May 2017 Published  November 2018

Fund Project: This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 694126DyCon). Moreover, this work was partially supported by the Grants MTM2014-52347, MTM201792996 of MINECO (Spain), and AFOSR Grant FA9550-18-1-0242

We analyze controllability properties for the one-dimensional heat equation with singular inverse-square potential
$\begin{align*} u_t-u_{xx}-\frac{\mu}{x^2}u = 0, \;\;\; (x, t)\in(0, 1)\times(0, T).\end{align*}$
For any
$\mu<1/4$
, we prove that the equation is null controllable through a boundary control
$f\in H^1(0, T)$
acting at the singularity point x = 0. This result is obtained employing the moment method by Fattorini and Russell.
Citation: Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2019011
References:
[1]

F. ArarunaE. Fernández-Cara and M. Santos, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations, ESAIM: COCV, 21 (2015), 835-856. doi: 10.1051/cocv/2014052.

[2]

P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139. doi: 10.1090/S0002-9947-1984-0742415-3.

[3]

H. Berestycki and M. J. Esteban, Existence and bifurcation of solutions for an elliptic degenerate problem, J. Differential Equations, 134 (1997), 1-25. doi: 10.1006/jdeq.1996.3165.

[4]

U. Biccari and E. Zuazua, Null controllability for a heat equation with a singular inverse-square potential involving the distance to the boundary function, J. Differential Equations, 261 (2016), 2809-2853. doi: 10.1016/j.jde.2016.05.019.

[5]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Diff. Eq., 10 (2005), 153-190.

[6]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19. doi: 10.1137/04062062X.

[7]

P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman Estimates for Degenerate Parabolic Operators with Applications, vol. 239. American Mathematical Society, 2016. doi: 10.1090/memo/1133.

[8]

P. CannarsaP. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls, Mat. Control Relat. Fields, 7 (2017), 171-211. doi: 10.3934/mcrf.2017006.

[9]

P. Cannarsa, P. Martinez and J. Vancostenoble, Precise estimates for biorthogonal families under asymptotic gap conditions, arXiv preprint, arXiv: 1706.02435, (2017).

[10]

P. Cannarsa, P. Martinez and J. Vancostenoble, The cost of controlling strongly degenerate parabolic equations, Indiana Univ. Math. J., 49 (2000), 815-818, arXiv: 1801.01380. doi: 10.1512/iumj.2000.49.2110.

[11]

P. CannarsaJ. Tort and M. Yamamoto, Unique continuation and approximate controllability for a degenerate parabolic equation, Appl. Anal., 91 (2012), 1409-1425. doi: 10.1080/00036811.2011.639766.

[12]

C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results, J. Funct. Anal., 263 (2012), 3741-3783. doi: 10.1016/j.jfa.2012.09.006.

[13]

C. Cazacu, Controllability of the heat equation with an inverse-square potential localized on the boundary, SIAM J. Control Optim., 52 (2014), 2055-2089. doi: 10.1137/120862557.

[14]

S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential, Comm. Part. Diff. Eq., 33 (2008), 1996-2019. doi: 10.1080/03605300802402633.

[15]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rat. Mech. Anal., 43 (1971), 272-292. doi: 10.1007/BF00250466.

[16]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quarterly of Applied Mathematics, 32 (1974), 45-69. doi: 10.1090/qam/510972.

[17]

E. Fernández-CaraM. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758. doi: 10.1016/j.jfa.2010.06.003.

[18]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differ. Equ., 5 (2000), 465-514.

[19]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, In Ann. Inst. H. Poincarè Anal. Non Linèaire, 17 (2000), 583-616. doi: 10.1016/S0294-1449(00)00117-7.

[20]

J. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476. doi: 10.1006/jdeq.1997.3375.

[21]

P. R. GiriK. S. GuptaS. Meljanac and A. Samsarov, Electron capture and scaling anomaly in polar molecules, Phys. Lett. A, 372 (2008), 2967-2970.

[22]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054. doi: 10.1137/120901374.

[23]

V. Hernández-Santamaría and L. de Teresa, Robust Stackelberg controllability for linear and semilinear heat equations, Evol. Equ. Control Theory, 7 (2018), 247-273. doi: 10.3934/eect.2018012.

[24]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Science & Business Media, 2005.

[25]

L. Landau, Bessel functions: Monotonicity and bounds, Journal of the London Mathematical Society, 61 (2000), 197-215. doi: 10.1112/S0024610799008352.

[26]

N. N. Lebedev and R. A. Silverman, Special Functions and Their Applications, Englewood Cliffs, N.J. 1965

[27]

L. Lorch and M. E. Muldoon, Monotonic sequences related to zeros of Bessel functions, Numerical Algorithms, 49 (2008), 221-233. doi: 10.1007/s11075-008-9189-4.

[28]

P. Martinez and J. Vancostenoble, The cost of boundary controllability for a parabolic equation with inverse square potential, Submitted.

[29]

P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362. doi: 10.1007/s00028-006-0214-6.

[30]

J. Vancostenoble, Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 761-790. doi: 10.3934/dcdss.2011.4.761.

[31]

J. Vancostenoble and E. Zuazua, Null controllability for the heat equation with singular inverse-square potentials, J. Funct. Anal., 254 (2008), 1864-1902. doi: 10.1016/j.jfa.2007.12.015.

[32]

J. Vancostenoble and E. Zuazua, Hardy inequalities, observability, and control for the wave and Schrödinger equations with singular potentials, SIAM J. Math. Anal., 41 (2009), 1508-1532. doi: 10.1137/080731396.

[33]

J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153. doi: 10.1006/jfan.1999.3556.

[34]

G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge university press, 1995.

show all references

References:
[1]

F. ArarunaE. Fernández-Cara and M. Santos, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations, ESAIM: COCV, 21 (2015), 835-856. doi: 10.1051/cocv/2014052.

[2]

P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139. doi: 10.1090/S0002-9947-1984-0742415-3.

[3]

H. Berestycki and M. J. Esteban, Existence and bifurcation of solutions for an elliptic degenerate problem, J. Differential Equations, 134 (1997), 1-25. doi: 10.1006/jdeq.1996.3165.

[4]

U. Biccari and E. Zuazua, Null controllability for a heat equation with a singular inverse-square potential involving the distance to the boundary function, J. Differential Equations, 261 (2016), 2809-2853. doi: 10.1016/j.jde.2016.05.019.

[5]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations, Adv. Diff. Eq., 10 (2005), 153-190.

[6]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19. doi: 10.1137/04062062X.

[7]

P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman Estimates for Degenerate Parabolic Operators with Applications, vol. 239. American Mathematical Society, 2016. doi: 10.1090/memo/1133.

[8]

P. CannarsaP. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls, Mat. Control Relat. Fields, 7 (2017), 171-211. doi: 10.3934/mcrf.2017006.

[9]

P. Cannarsa, P. Martinez and J. Vancostenoble, Precise estimates for biorthogonal families under asymptotic gap conditions, arXiv preprint, arXiv: 1706.02435, (2017).

[10]

P. Cannarsa, P. Martinez and J. Vancostenoble, The cost of controlling strongly degenerate parabolic equations, Indiana Univ. Math. J., 49 (2000), 815-818, arXiv: 1801.01380. doi: 10.1512/iumj.2000.49.2110.

[11]

P. CannarsaJ. Tort and M. Yamamoto, Unique continuation and approximate controllability for a degenerate parabolic equation, Appl. Anal., 91 (2012), 1409-1425. doi: 10.1080/00036811.2011.639766.

[12]

C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results, J. Funct. Anal., 263 (2012), 3741-3783. doi: 10.1016/j.jfa.2012.09.006.

[13]

C. Cazacu, Controllability of the heat equation with an inverse-square potential localized on the boundary, SIAM J. Control Optim., 52 (2014), 2055-2089. doi: 10.1137/120862557.

[14]

S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential, Comm. Part. Diff. Eq., 33 (2008), 1996-2019. doi: 10.1080/03605300802402633.

[15]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rat. Mech. Anal., 43 (1971), 272-292. doi: 10.1007/BF00250466.

[16]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quarterly of Applied Mathematics, 32 (1974), 45-69. doi: 10.1090/qam/510972.

[17]

E. Fernández-CaraM. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), 1720-1758. doi: 10.1016/j.jfa.2010.06.003.

[18]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differ. Equ., 5 (2000), 465-514.

[19]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, In Ann. Inst. H. Poincarè Anal. Non Linèaire, 17 (2000), 583-616. doi: 10.1016/S0294-1449(00)00117-7.

[20]

J. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476. doi: 10.1006/jdeq.1997.3375.

[21]

P. R. GiriK. S. GuptaS. Meljanac and A. Samsarov, Electron capture and scaling anomaly in polar molecules, Phys. Lett. A, 372 (2008), 2967-2970.

[22]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054. doi: 10.1137/120901374.

[23]

V. Hernández-Santamaría and L. de Teresa, Robust Stackelberg controllability for linear and semilinear heat equations, Evol. Equ. Control Theory, 7 (2018), 247-273. doi: 10.3934/eect.2018012.

[24]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Science & Business Media, 2005.

[25]

L. Landau, Bessel functions: Monotonicity and bounds, Journal of the London Mathematical Society, 61 (2000), 197-215. doi: 10.1112/S0024610799008352.

[26]

N. N. Lebedev and R. A. Silverman, Special Functions and Their Applications, Englewood Cliffs, N.J. 1965

[27]

L. Lorch and M. E. Muldoon, Monotonic sequences related to zeros of Bessel functions, Numerical Algorithms, 49 (2008), 221-233. doi: 10.1007/s11075-008-9189-4.

[28]

P. Martinez and J. Vancostenoble, The cost of boundary controllability for a parabolic equation with inverse square potential, Submitted.

[29]

P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362. doi: 10.1007/s00028-006-0214-6.

[30]

J. Vancostenoble, Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 761-790. doi: 10.3934/dcdss.2011.4.761.

[31]

J. Vancostenoble and E. Zuazua, Null controllability for the heat equation with singular inverse-square potentials, J. Funct. Anal., 254 (2008), 1864-1902. doi: 10.1016/j.jfa.2007.12.015.

[32]

J. Vancostenoble and E. Zuazua, Hardy inequalities, observability, and control for the wave and Schrödinger equations with singular potentials, SIAM J. Math. Anal., 41 (2009), 1508-1532. doi: 10.1137/080731396.

[33]

J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153. doi: 10.1006/jfan.1999.3556.

[34]

G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge university press, 1995.

[1]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[2]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[3]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[4]

Matthias Eller. A remark on Littman's method of boundary controllability. Evolution Equations & Control Theory, 2013, 2 (4) : 621-630. doi: 10.3934/eect.2013.2.621

[5]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[6]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[7]

Kazuhiro Ishige, Y. Kabeya. Hot spots for the two dimensional heat equation with a rapidly decaying negative potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 833-849. doi: 10.3934/dcdss.2011.4.833

[8]

Kazuhiro Ishige, Asato Mukai. Large time behavior of solutions of the heat equation with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4041-4069. doi: 10.3934/dcds.2018176

[9]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[10]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[11]

Abdelhakim Belghazi, Ferroudja Smadhi, Nawel Zaidi, Ouahiba Zair. Carleman inequalities for the two-dimensional heat equation in singular domains. Mathematical Control & Related Fields, 2012, 2 (4) : 331-359. doi: 10.3934/mcrf.2012.2.331

[12]

Ning-An Lai, Jinglei Zhao. Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1317-1325. doi: 10.3934/cpaa.2014.13.1317

[13]

Mi-Ho Giga, Yoshikazu Giga, Takeshi Ohtsuka, Noriaki Umeda. On behavior of signs for the heat equation and a diffusion method for data separation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2277-2296. doi: 10.3934/cpaa.2013.12.2277

[14]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[15]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[16]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. The homogenization of the heat equation with mixed conditions on randomly subsets of the boundary. Conference Publications, 2013, 2013 (special) : 85-94. doi: 10.3934/proc.2013.2013.85

[17]

Huicong Li. Effective boundary conditions of the heat equation on a body coated by functionally graded material. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1415-1430. doi: 10.3934/dcds.2016.36.1415

[18]

Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627

[19]

Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747

[20]

Henning Struchtrup. Unique moment set from the order of magnitude method. Kinetic & Related Models, 2012, 5 (2) : 417-440. doi: 10.3934/krm.2012.5.417

2017 Impact Factor: 0.631

Article outline

[Back to Top]