• Previous Article
    Application of the boundary control method to partial data Borg-Levinson inverse spectral problem
  • MCRF Home
  • This Issue
  • Next Article
    A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance
doi: 10.3934/mcrf.2019007

Insensitizing controls for a semilinear parabolic equation: A numerical approach

1. 

Institut de Mathématiques de Toulouse & Institut universitaire de France, UMR 5219, Université de Toulouse, CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France

2. 

Depto. de Control Automático, CINVESTAV-IPN, Apartado Postal 14-740, 07000 México, D.F., México

3. 

DeustoTech, University of Deusto, 48007 Bilbao, Basque Country, Spain

4. 

Facultad de Ingeniería, Universidad de Deusto, Avda Universidades 24, 48007 Bilbao, Basque Country, Spain

5. 

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, C.U. 04510 México D.F., México

* Corresponding author: F. Boyer

Received  May 2017 Revised  November 2017 Published  September 2018

In this paper, we study the insensitizing control problem in the discrete setting of finite-differences. We prove the existence of a control that insensitizes the norm of the observed solution of a 1-D semi discrete parabolic equation. We derive a (relaxed) observability estimate that yields a controllability result for the cascade system arising in the insensitizing control formulation. Moreover, we deal with the problem of computing numerical approximations of insensitizing controls for the heat equation by using the Hilbert Uniqueness Method (HUM). We present various numerical illustrations.

Citation: Franck Boyer, Víctor Hernández-Santamaría, Luz De Teresa. Insensitizing controls for a semilinear parabolic equation: A numerical approach. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2019007
References:
[1]

F. Ammar-KhojdaA. BenabdallahM. González-Burgos and L. de Teresa, New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence, J. Math. Anal. Appl., 444 (2016), 1071-1113. doi: 10.1016/j.jmaa.2016.06.058.

[2]

O. Bodart and C. Fabre, Controls insensitizing the norm of the solutions of a semilinear heat equation, J. Math. Anal. and App., 195 (1995), 658-683. doi: 10.1006/jmaa.1995.1382.

[3]

O. BodartM. González-Burgos and R. Pérez-García, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Communications in Partial Differential Equations, 29 (2004), 1017-1050. doi: 10.1081/PDE-200033749.

[4]

O. BodartM. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, Nonlinear Anal., 57 (2004), 687-711. doi: 10.1016/j.na.2004.03.012.

[5]

F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, ESAIM Proceedings, 41 (2013), 15-58. doi: 10.1051/proc/201341002.

[6]

F. BoyerF. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, J. Math Pures Appl., 93 (2010), 240-276. doi: 10.1016/j.matpur.2009.11.003.

[7]

F. BoyerF. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim., 48 (2010), 5357-5397. doi: 10.1137/100784278.

[8]

F. BoyerF. Hubert and J. Le Rousseau, Uniform null-controllability for space/time-discretized parabolic equations, Numer. Math., 118 (2011), 601-661. doi: 10.1007/s00211-011-0368-1.

[9]

F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear and semi-discrete parabolic equations, Ann. I. H. Poincaré-AN, 31 (2014), 1035-1078. doi: 10.1016/j.anihpc.2013.07.011.

[10]

N. CarreñoM. Gueye and S. Guerrero, Insensitizing control with two vanishing components for the three-dimensional Boussinesq system, ESAIM Control Optim. Calc. Var., 21 (2015), 73-100. doi: 10.1051/cocv/2014020.

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, 1976.

[12]

C. FabreJ. P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Royal Soc. Edinburgh, 125 (1995), 31-61. doi: 10.1017/S0308210500030742.

[13]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. I. H. Poincaré-AN, 17 (2000), 583-616. doi: 10.1016/S0294-1449(00)00117-7.

[14]

A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes, Research Institute of Mathematics, Seoul National University, Korea, 1996.

[15]

R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems, Acta Numer., (1994), 269-378. doi: 10.1017/S0962492900002452.

[16]

R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems, Encyclopedia of Mathematics and its Applications, vol. 117, Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511721595.

[17]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m $ coupled parabolic PDEs by one control force, Portugal. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859.

[18]

S. Guerrero, Controllability of systems of Stokes equations with one control force: existence of insensitizing controls, Ann. I. H. Poincaré-AN, 24 (2007), 1029-1054. doi: 10.1016/j.anihpc.2006.11.001.

[19]

S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394. doi: 10.1137/060653135.

[20]

M. Gueye, Insensitizing controls for the Navier-Stokes equations, Ann. I. H. Poincaré-AN, 30 (2013), 825-844. doi: 10.1016/j.anihpc.2012.09.005.

[21]

O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., 16 (2010), 247-274. doi: 10.1051/cocv/2008077.

[22]

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Syst. Control Lett., 55 (2006), 597-609. doi: 10.1016/j.sysconle.2006.01.004.

[23]

J.-L. Lions, Quelques notions dans l'analyse et le contrôle de systèmes à données incomplètes, Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics, University of Málaga, 1990, 43-54.

[24]

L. de Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), 39-72. doi: 10.1080/03605300008821507.

[25]

L. de Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation, Commun. Pure. Appl. Anal., 8 (2009), 457-471. doi: 10.3934/cpaa.2009.8.457.

[26]

E. Zuazua, Control and numerical approximation of the wave and heat equation, International Congress of Mathematicians, Madrid, Spain, 3 (2006), 1389-1417.

show all references

References:
[1]

F. Ammar-KhojdaA. BenabdallahM. González-Burgos and L. de Teresa, New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence, J. Math. Anal. Appl., 444 (2016), 1071-1113. doi: 10.1016/j.jmaa.2016.06.058.

[2]

O. Bodart and C. Fabre, Controls insensitizing the norm of the solutions of a semilinear heat equation, J. Math. Anal. and App., 195 (1995), 658-683. doi: 10.1006/jmaa.1995.1382.

[3]

O. BodartM. González-Burgos and R. Pérez-García, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Communications in Partial Differential Equations, 29 (2004), 1017-1050. doi: 10.1081/PDE-200033749.

[4]

O. BodartM. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, Nonlinear Anal., 57 (2004), 687-711. doi: 10.1016/j.na.2004.03.012.

[5]

F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, ESAIM Proceedings, 41 (2013), 15-58. doi: 10.1051/proc/201341002.

[6]

F. BoyerF. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, J. Math Pures Appl., 93 (2010), 240-276. doi: 10.1016/j.matpur.2009.11.003.

[7]

F. BoyerF. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM J. Control Optim., 48 (2010), 5357-5397. doi: 10.1137/100784278.

[8]

F. BoyerF. Hubert and J. Le Rousseau, Uniform null-controllability for space/time-discretized parabolic equations, Numer. Math., 118 (2011), 601-661. doi: 10.1007/s00211-011-0368-1.

[9]

F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear and semi-discrete parabolic equations, Ann. I. H. Poincaré-AN, 31 (2014), 1035-1078. doi: 10.1016/j.anihpc.2013.07.011.

[10]

N. CarreñoM. Gueye and S. Guerrero, Insensitizing control with two vanishing components for the three-dimensional Boussinesq system, ESAIM Control Optim. Calc. Var., 21 (2015), 73-100. doi: 10.1051/cocv/2014020.

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, 1976.

[12]

C. FabreJ. P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Royal Soc. Edinburgh, 125 (1995), 31-61. doi: 10.1017/S0308210500030742.

[13]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. I. H. Poincaré-AN, 17 (2000), 583-616. doi: 10.1016/S0294-1449(00)00117-7.

[14]

A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes, Research Institute of Mathematics, Seoul National University, Korea, 1996.

[15]

R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems, Acta Numer., (1994), 269-378. doi: 10.1017/S0962492900002452.

[16]

R. Glowinski, J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems, Encyclopedia of Mathematics and its Applications, vol. 117, Cambridge University Press, Cambridge, 2008. doi: 10.1017/CBO9780511721595.

[17]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m $ coupled parabolic PDEs by one control force, Portugal. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859.

[18]

S. Guerrero, Controllability of systems of Stokes equations with one control force: existence of insensitizing controls, Ann. I. H. Poincaré-AN, 24 (2007), 1029-1054. doi: 10.1016/j.anihpc.2006.11.001.

[19]

S. Guerrero, Null controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 46 (2007), 379-394. doi: 10.1137/060653135.

[20]

M. Gueye, Insensitizing controls for the Navier-Stokes equations, Ann. I. H. Poincaré-AN, 30 (2013), 825-844. doi: 10.1016/j.anihpc.2012.09.005.

[21]

O. Kavian and L. de Teresa, Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., 16 (2010), 247-274. doi: 10.1051/cocv/2008077.

[22]

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Syst. Control Lett., 55 (2006), 597-609. doi: 10.1016/j.sysconle.2006.01.004.

[23]

J.-L. Lions, Quelques notions dans l'analyse et le contrôle de systèmes à données incomplètes, Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics, University of Málaga, 1990, 43-54.

[24]

L. de Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), 39-72. doi: 10.1080/03605300008821507.

[25]

L. de Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation, Commun. Pure. Appl. Anal., 8 (2009), 457-471. doi: 10.3934/cpaa.2009.8.457.

[26]

E. Zuazua, Control and numerical approximation of the wave and heat equation, International Congress of Mathematicians, Madrid, Spain, 3 (2006), 1389-1417.

Figure 1.  $f(y) = -0.1 \sin(y)$, $y_0 = 0$, $\xi(x, t) = {\bf{1}}_{[0.4, 1]}(t)$. Uncontrolled solution
Figure 2.  $f(y) = -0.1 \sin(y)$, $y_0 = 0$, $\xi(x, t) = {\bf{1}}_{[0.4, 1]}(t)$. Controlled solution
Figure 3.  Convergence properties of the method for insensitizing problem
Figure 4.  Value of $\Psi(y)$ for different parameters $\tau$ and initial perturbations $w_0$
Figure 5.  $y_0(x) = {\bf{1}}_{(0.2, 0.7)}(x)$, $\xi = 0$, $f = 0$, $\omega = (0.3, 0.8)$. Same legend as in Figure 3
Figure 6.  The case where $\mathcal{O} = \Omega$ with $\xi = 0$, $\omega = (0, 0.5)$. Same legend as in Figure 3
Figure 7.  Different values of $\mathcal{M}$ in the source term. Same legend as in Figure 3
Figure 8.  The case where $\omega \cap \mathcal{O} = \emptyset$. Same legend as in Figure 3
Figure 9.  Convergence properties for the quadratic case. Same legend as in Figure 3.
Figure 10.  $f(y) = -y^2$, $y_0 = 0$, $\xi(x, t) = 8\times {\bf{1}}_{[0.2, 1]}(t)$. Time evolution
Figure 11.  $f(y) = -y^2$, $y_0 = 0$, $\xi(x, t) = 8\times {\bf{1}}_{[0.2, 1]}(t)$. Controlled solution
Figure 12.  Simultaneous insensitizing and null-control
[1]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[2]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[3]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[4]

Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469

[5]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

[6]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[7]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[8]

Victor Isakov. Carleman estimates for some anisotropic elasticity systems and applications. Evolution Equations & Control Theory, 2012, 1 (1) : 141-154. doi: 10.3934/eect.2012.1.141

[9]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[10]

Giuseppe Da Prato, Franco Flandoli. Some results for pathwise uniqueness in Hilbert spaces. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1789-1797. doi: 10.3934/cpaa.2014.13.1789

[11]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[12]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[13]

Sylvie Benzoni-Gavage, Pierre Huot. Existence of semi-discrete shocks. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 163-190. doi: 10.3934/dcds.2002.8.163

[14]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[15]

Kaili Zhuang, Tatsien Li, Bopeng Rao. Exact controllability for first order quasilinear hyperbolic systems with internal controls. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1105-1124. doi: 10.3934/dcds.2016.36.1105

[16]

Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems & Imaging, 2016, 10 (3) : 741-764. doi: 10.3934/ipi.2016019

[17]

Sylvain Ervedoza, Enrique Zuazua. A systematic method for building smooth controls for smooth data. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1375-1401. doi: 10.3934/dcdsb.2010.14.1375

[18]

Hugo Leiva, Jahnett Uzcategui. Approximate controllability of discrete semilinear systems and applications. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1803-1812. doi: 10.3934/dcdsb.2016023

[19]

Victor Isakov, Nanhee Kim. Weak Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 799-825. doi: 10.3934/dcds.2010.27.799

[20]

Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations & Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023

2017 Impact Factor: 0.631

Article outline

Figures and Tables

[Back to Top]