September 2018, 8(3&4): 935-964. doi: 10.3934/mcrf.2018041

Controllability under positivity constraints of semilinear heat equations

1. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

2. 

DeustoTech, Fundación Deusto, Avda. Universidades, 24, 48007, Bilbao, Basque Country, Spain

3. 

Facultad de Ingeniería, Universidad de Deusto, Avda. Universidades, 24, 48007, Bilbao, Basque Country, Spain

4. 

Laboratoire Jacques-Louis Lions, UPMC Univ. Paris 06, CNRSUMR 7598, Sorbonne Universités, F-75005, Paris, France

* Corresponding author: Dario Pighin

Dedicated to Professor Jiongmin Yong on the occasion of his 60th birthday

Received  November 2017 Revised  April 2018 Published  September 2018

Fund Project: This work was partially supported by the Advanced Grant DYCON (Dynamic Control) of the European Research Council Executive Agency, FA9550-15-1-0027 of AFOSR, FA9550-14-1-0214 of the EOARD-AFOSR, the MTM2014-52347 and MTM2017 Grants of the MINECO (Spain) and ICON of the French ANR

In many practical applications of control theory some constraints on the state and/or on the control need to be imposed.

In this paper, we prove controllability results for semilinear parabolic equations under positivity constraints on the control, when the time horizon is long enough. As we shall see, in fact, the minimal controllability time turns out to be strictly positive.

More precisely, we prove a global steady state constrained controllability result for a semilinear parabolic equation with $C^1$ nonlinearity, without sign or globally Lipschitz assumptions on the nonlinear term. Then, under suitable dissipativity assumptions on the system, we extend the result to any initial datum and any target trajectory.

We conclude with some numerical simulations that confirm the theoretical results that provide further information of the sparse structure of constrained controls in minimal time.

Citation: Dario Pighin, Enrique Zuazua. Controllability under positivity constraints of semilinear heat equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 935-964. doi: 10.3934/mcrf.2018041
References:
[1]

F. Ammar-Khodja, S. Micu and A. Münch, Controllability of a string submitted to unilateral constraint, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Elsevier, 27 (2010), 1097-1119. doi: 10.1016/j.anihpc.2010.02.003.

[2]

S. Aniţa and D. Tataru, Null controllability for the dissipative semilinear heat equation, Applied Mathematics & Optimization, 46 (2002), 97-105. doi: 10.1007/s00245-002-0746-2.

[3]

V. Barbu, Optimal Control of Variational Inequalities, Research notes in mathematics, Pitman Advanced Pub. Program, 1984, URL https://books.google.es/books?id=PRKoAAAAIAAJ.

[4]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA, 1993, URL https://books.google.es/books?id=IaqpPMvArqEC.

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer New York, 2011, URL https://books.google.es/books?id=GAA2XqOIIGoC. doi: 10.1007/978-0-387-70914-7.

[6]

W. Chan and B. Z. Guo, Optimal birth control of population dynamics. ⅱ. problems with free final time, phase constraints, and mini-max costs, Journal of Mathematical Analysis and Applications, 146 (1990), 523-539. doi: 10.1016/0022-247X(90)90322-7.

[7]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM Journal on Control and Optimization, 48 (2009), 2032-2050. doi: 10.1137/080716372.

[8]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations, SIAM journal on control and optimization, 43 (2004), 549-569. doi: 10.1137/S036301290342471X.

[9]

J. Coron, Control and Nonlinearity, Mathematical surveys and monographs, American Mathematical Society, 2007, URL https://books.google.es/books?id=aEKv1bpcrKQC. doi: 10.1090/surv/136.

[10]

J. I. Diaz, Sur la contrôlabilité approchée des inéquations variationelles et dutres problèmes paraboliques non linéaires, CR Acad. Sci. Paris, 312 (1991), 519-522.

[11]

O. Y. Emanuilov, Controllability of parabolic equations, Sbornik: Mathematics, 186 (1995), 879-900. doi: 10.1070/SM1995v186n06ABEH000047.

[12]

L. Evans, Partial Differential Equations, Graduate studies in mathematics, American Mathematical Society, 2010, URL https://books.google.es/books?id=Xnu0o_EJrCQC. doi: 10.1090/gsm/019.

[13]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Archive for Rational Mechanics and Analysis, 43 (1971), 272-292. doi: 10.1007/BF00250466.

[14]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 17 (2000), 583-616, URL http://www.sciencedirect.com/science/article/pii/S0294144900001177. doi: 10.1016/S0294-1449(00)00117-7.

[15]

R. Fourer, D. M. Gay and B. W. Kernighan, A modeling language for mathematical programming, Management Science, 36 (1990), 519-554. URL https://orfe.princeton.edu/~rvdb/307/textbook/AMPLbook.pdf. doi: 10.1287/mnsc.36.5.519.

[16]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001.

[17]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, SIAM, 2011. doi: 10.1137/1.9781611972030.ch1.

[18]

J. Henry, Etude de la contrôlabilité de certaines équations paraboliques non linéaires, These, Paris.

[19]

O. Y. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a sobolev space of negative order and their applications, Control of Nonlinear Distributed Parameter Systems, 218 (2011), 113-137.

[20]

O. Ladyzhenskaia, V. Solonnikov and N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, translations of mathematical monographs, American Mathematical Society, 1988, URL https://books.google.es/books?id=dolUcRSDPgkC.

[21]

G. Lebeau and L. Robbiano, Contrôle exact de léquation de la chaleur, Communications in Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[22]

X. Li and J. Yong, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1995, URL https://books.google.es/books?id=ryfUBwAAQBAJ. doi: 10.1007/978-1-4612-4260-4.

[23]

G. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996, URL https://books.google.es/books?id=s9Guiwylm3cC. doi: 10.1142/3302.

[24]

J.-L. Lions, Controlabilité exacte des systèmes distribués: remarques sur la théorie générale et les applications, Springer, 83 (1986), 3-14. doi: 10.1007/BFb0007542.

[25]

J. Lions and E. Magenes, Problmes aux Limites Non Homognes et Applications, no. v. 1 in Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg, 1968.

[26]

J. Lohéac, E. Trélat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, Mathematical Models and Methods in Applied Sciences, 27 (2017), 1587-1644, URL http://www.worldscientific.com/doi/abs/10.1142/S0218202517500270. doi: 10.1142/S0218202517500270.

[27]

S. Mitter and J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg, 1971, URL https://books.google.it/books?id=KDlhRQAACAAJ.

[28]

A. Porretta, Local existence and uniqueness of weak solutions for non-linear parabolic equations with superlinear growth and unbounded initial data, Advances in Differential Equations, 6 (2001), 73-128.

[29]

M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984, URL https://books.google.es/books?id=JUXhBwAAQBAJ. doi: 10.1007/978-1-4612-5282-5.

[30]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Annali di Matematica Pura ed Applicata, 146 (1986), 65-96, URL https://doi.org/10.1007/BF01762360. doi: 10.1007/BF01762360.

[31]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57. doi: 10.1007/s10107-004-0559-y.

[32]

Z. Wu, J. Yin and C. Wang, Elliptic & Parabolic Equations, World Scientific, 2006, URL https://books.google.es/books?id=DnCH1_1YffYC. doi: 10.1142/6238.

[33]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, Handbook of Differential Equations: Evolutionary Equations, 3 (2007), 527-621. doi: 10.1016/S1874-5717(07)80010-7.

show all references

References:
[1]

F. Ammar-Khodja, S. Micu and A. Münch, Controllability of a string submitted to unilateral constraint, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Elsevier, 27 (2010), 1097-1119. doi: 10.1016/j.anihpc.2010.02.003.

[2]

S. Aniţa and D. Tataru, Null controllability for the dissipative semilinear heat equation, Applied Mathematics & Optimization, 46 (2002), 97-105. doi: 10.1007/s00245-002-0746-2.

[3]

V. Barbu, Optimal Control of Variational Inequalities, Research notes in mathematics, Pitman Advanced Pub. Program, 1984, URL https://books.google.es/books?id=PRKoAAAAIAAJ.

[4]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA, 1993, URL https://books.google.es/books?id=IaqpPMvArqEC.

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer New York, 2011, URL https://books.google.es/books?id=GAA2XqOIIGoC. doi: 10.1007/978-0-387-70914-7.

[6]

W. Chan and B. Z. Guo, Optimal birth control of population dynamics. ⅱ. problems with free final time, phase constraints, and mini-max costs, Journal of Mathematical Analysis and Applications, 146 (1990), 523-539. doi: 10.1016/0022-247X(90)90322-7.

[7]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM Journal on Control and Optimization, 48 (2009), 2032-2050. doi: 10.1137/080716372.

[8]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations, SIAM journal on control and optimization, 43 (2004), 549-569. doi: 10.1137/S036301290342471X.

[9]

J. Coron, Control and Nonlinearity, Mathematical surveys and monographs, American Mathematical Society, 2007, URL https://books.google.es/books?id=aEKv1bpcrKQC. doi: 10.1090/surv/136.

[10]

J. I. Diaz, Sur la contrôlabilité approchée des inéquations variationelles et dutres problèmes paraboliques non linéaires, CR Acad. Sci. Paris, 312 (1991), 519-522.

[11]

O. Y. Emanuilov, Controllability of parabolic equations, Sbornik: Mathematics, 186 (1995), 879-900. doi: 10.1070/SM1995v186n06ABEH000047.

[12]

L. Evans, Partial Differential Equations, Graduate studies in mathematics, American Mathematical Society, 2010, URL https://books.google.es/books?id=Xnu0o_EJrCQC. doi: 10.1090/gsm/019.

[13]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Archive for Rational Mechanics and Analysis, 43 (1971), 272-292. doi: 10.1007/BF00250466.

[14]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 17 (2000), 583-616, URL http://www.sciencedirect.com/science/article/pii/S0294144900001177. doi: 10.1016/S0294-1449(00)00117-7.

[15]

R. Fourer, D. M. Gay and B. W. Kernighan, A modeling language for mathematical programming, Management Science, 36 (1990), 519-554. URL https://orfe.princeton.edu/~rvdb/307/textbook/AMPLbook.pdf. doi: 10.1287/mnsc.36.5.519.

[16]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001.

[17]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, SIAM, 2011. doi: 10.1137/1.9781611972030.ch1.

[18]

J. Henry, Etude de la contrôlabilité de certaines équations paraboliques non linéaires, These, Paris.

[19]

O. Y. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a sobolev space of negative order and their applications, Control of Nonlinear Distributed Parameter Systems, 218 (2011), 113-137.

[20]

O. Ladyzhenskaia, V. Solonnikov and N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, translations of mathematical monographs, American Mathematical Society, 1988, URL https://books.google.es/books?id=dolUcRSDPgkC.

[21]

G. Lebeau and L. Robbiano, Contrôle exact de léquation de la chaleur, Communications in Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[22]

X. Li and J. Yong, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1995, URL https://books.google.es/books?id=ryfUBwAAQBAJ. doi: 10.1007/978-1-4612-4260-4.

[23]

G. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996, URL https://books.google.es/books?id=s9Guiwylm3cC. doi: 10.1142/3302.

[24]

J.-L. Lions, Controlabilité exacte des systèmes distribués: remarques sur la théorie générale et les applications, Springer, 83 (1986), 3-14. doi: 10.1007/BFb0007542.

[25]

J. Lions and E. Magenes, Problmes aux Limites Non Homognes et Applications, no. v. 1 in Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg, 1968.

[26]

J. Lohéac, E. Trélat and E. Zuazua, Minimal controllability time for the heat equation under unilateral state or control constraints, Mathematical Models and Methods in Applied Sciences, 27 (2017), 1587-1644, URL http://www.worldscientific.com/doi/abs/10.1142/S0218202517500270. doi: 10.1142/S0218202517500270.

[27]

S. Mitter and J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg, 1971, URL https://books.google.it/books?id=KDlhRQAACAAJ.

[28]

A. Porretta, Local existence and uniqueness of weak solutions for non-linear parabolic equations with superlinear growth and unbounded initial data, Advances in Differential Equations, 6 (2001), 73-128.

[29]

M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984, URL https://books.google.es/books?id=JUXhBwAAQBAJ. doi: 10.1007/978-1-4612-5282-5.

[30]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Annali di Matematica Pura ed Applicata, 146 (1986), 65-96, URL https://doi.org/10.1007/BF01762360. doi: 10.1007/BF01762360.

[31]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57. doi: 10.1007/s10107-004-0559-y.

[32]

Z. Wu, J. Yin and C. Wang, Elliptic & Parabolic Equations, World Scientific, 2006, URL https://books.google.es/books?id=DnCH1_1YffYC. doi: 10.1142/6238.

[33]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, Handbook of Differential Equations: Evolutionary Equations, 3 (2007), 527-621. doi: 10.1016/S1874-5717(07)80010-7.

Figure 1.  Stepwise procedure
Figure 2.  Illustration of the proof of Theorem 1.3 in two steps: Stabilization + Control
Figure 3.  Final data for the adjoint system
Figure 4.  Evolution of the adjoint heat equation with final datum $\varphi_T$
Figure 5.  graph of the control in the minimal time
[1]

Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068

[2]

Víctor Hernández-Santamaría, Luz de Teresa. Robust Stackelberg controllability for linear and semilinear heat equations. Evolution Equations & Control Theory, 2018, 7 (2) : 247-273. doi: 10.3934/eect.2018012

[3]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[4]

Louis Tebou. Simultaneous controllability of some uncoupled semilinear wave equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3721-3743. doi: 10.3934/dcds.2015.35.3721

[5]

Hugo Leiva, Nelson Merentes, José L. Sánchez. Approximate controllability of semilinear reaction diffusion equations. Mathematical Control & Related Fields, 2012, 2 (2) : 171-182. doi: 10.3934/mcrf.2012.2.171

[6]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[7]

Jonathan Touboul. Erratum on: Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2018, 8 (0) : 1-2. doi: 10.3934/mcrf.2019006

[8]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[9]

Jonathan Touboul. Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2012, 2 (4) : 429-455. doi: 10.3934/mcrf.2012.2.429

[10]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[11]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[12]

Kazuhiro Ishige, Tatsuki Kawakami. Asymptotic behavior of solutions for some semilinear heat equations in $R^N$. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1351-1371. doi: 10.3934/cpaa.2009.8.1351

[13]

Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585

[14]

Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure & Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793

[15]

Zhiguo Wang, Yiqian Wang, Daxiong Piao. A new method for the boundedness of semilinear Duffing equations at resonance. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3961-3991. doi: 10.3934/dcds.2016.36.3961

[16]

Sergei A. Avdonin, Boris P. Belinskiy. Controllability of a string under tension. Conference Publications, 2003, 2003 (Special) : 57-67. doi: 10.3934/proc.2003.2003.57

[17]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[18]

Yuncheng You. Pullback uniform dissipativity of stochastic reversible Schnackenberg equations. Conference Publications, 2015, 2015 (special) : 1134-1142. doi: 10.3934/proc.2015.1134

[19]

Wansheng Wang, Chengjian Zhang. Analytical and numerical dissipativity for nonlinear generalized pantograph equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1245-1260. doi: 10.3934/dcds.2011.29.1245

[20]

Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (15)
  • HTML views (52)
  • Cited by (0)

Other articles
by authors

[Back to Top]