September  2018, 8(3&4): 899-933. doi: 10.3934/mcrf.2018040

Carleman commutator approach in logarithmic convexity for parabolic equations

Institut Denis Poisson, CNRS, UMR 7013, Université d’Orléans, BP 6759, 45067 Orléans Cedex 2, France

Received  August 2017 Revised  December 2017 Published  September 2018

Fund Project: This work is supported by the Région Centre (France) - THESPEGE Project

In this paper we investigate on a new strategy combining the logarithmic convexity (or frequency function) and the Carleman commutator to obtain an observation estimate at one time for the heat equation in a bounded domain. We also consider the heat equation with an inverse square potential. Moreover, a spectral inequality for the associated eigenvalue problem is derived.

Citation: Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040
References:
[1]

S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach Space, Comm. Pure Appl. Math., 16 (1963), 121-239. doi: 10.1002/cpa.3160160204. Google Scholar

[2]

J. ApraizL. EscauriazaG. Wang and C. Zhang, Observability inequalities and measurable sets, J. Eur. Math. Soc. (JEMS), 16 (2014), 2433-2475. doi: 10.4171/JEMS/490. Google Scholar

[3]

C. Bardos and K. D. Phung, Observation estimate for kinetic transport equations by diffusion approximation, C. R. Math. Acad. Sci. Paris, 355 (2017), 640-664. doi: 10.1016/j.crma.2017.04.017. Google Scholar

[4]

C. Bardos and L. Tartar, Sur l'unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. Rational Mech. Anal., 50 (1973), 10-25. doi: 10.1007/BF00251291. Google Scholar

[5]

A. Benabdallah and M. G. Naso, Null controllability of a thermoelastic plate, Abstr. Appl. Anal., 7 (2002), 585-599. doi: 10.1155/S108533750220408X. Google Scholar

[6]

F. Chaves-Silva and G. Lebeau, Spectral inequality and optimal cost of controllability for the Stokes system, ESAIM Control Optim. Calc. Var., 22 (2016), 1137-1162. doi: 10.1051/cocv/2016034. Google Scholar

[7]

L. EscauriazaF. J. Fernandez and S. Vessella, Doubling properties of caloric functions, Appl. Anal., 85 (2006), 205-223. doi: 10.1080/00036810500277082. Google Scholar

[8]

L. EscauriazaC. KenigG. Ponce and L. Vega, Convexity properties of solutions to the free Schrödinger equation with Gaussian decay, Math. Res. Lett., 15 (2008), 957-971. doi: 10.4310/MRL.2008.v15.n5.a10. Google Scholar

[9]

L. EscauriazaC. KenigG. Ponce and L. Vega, Hardy's uncertainty principle, convexity and Schrödinger evolutions, J. Eur. Math. Soc. (JEMS), 10 (2008), 883-907. doi: 10.4171/JEMS/134. Google Scholar

[10]

L. EscauriazaC. KenigG. Ponce and L. Vega, Hardy uncertainty principle, convexity and parabolic evolutions, Comm. Math. Phys., 346 (2016), 667-678. doi: 10.1007/s00220-015-2500-z. Google Scholar

[11]

L. EscauriazaS. Montaner and C. Zhang, Observation from measurable sets for parabolic analytic evolutions and applications, J. Math. Pures Appl., 104 (2015), 837-867. doi: 10.1016/j.matpur.2015.05.005. Google Scholar

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. Google Scholar

[13]

P. Gao, The Lebeau-Robbiano inequality for the one-dimensional fourth order elliptic operator and its application, ESAIM Control Optim. Calc. Var., 22 (2016), 811-831. doi: 10.1051/cocv/2015030. Google Scholar

[14]

A. Grigor'yan, Integral maximum principle and its applications, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 353-362. doi: 10.1017/S0308210500028511. Google Scholar

[15]

V. Isakov, Inverse Problems for Partial Differential Equations, Second Edition, Springer, New York, 2006. Google Scholar

[16]

D. Jerison and G. Lebeau, Nodal sets of sums of eigenfunctions, in Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996), Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, (1999), 223-239. Google Scholar

[17]

J. Le RousseauM. Léautaud and L. Robbiano, Controllability of a parabolic system with a diffuse interface, J. Eur. Math. Soc. (JEMS), 15 (2013), 1485-1574. doi: 10.4171/JEMS/397. Google Scholar

[18]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., 18 (2012), 712-747. doi: 10.1051/cocv/2011168. Google Scholar

[19]

J. Le Rousseau and I. Moyano, Null-controllability of the Kolmogorov equation in the whole phase space, J. Differential Equations, 260 (2016), 3193-3233. doi: 10.1016/j.jde.2015.09.062. Google Scholar

[20]

J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations, Arch. Ration. Mech. Anal., 195 (2010), 953-990. doi: 10.1007/s00205-009-0242-9. Google Scholar

[21]

J. Le Rousseau and L. Robbiano, Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces, Invent. Math., 183 (2011), 245-336. doi: 10.1007/s00222-010-0278-3. Google Scholar

[22]

J. Le Rousseau and L. Robbiano, Spectral inequality and resolvent estimate for the bi-Laplace operator, preprint, arXiv: 1509.02098.Google Scholar

[23]

M. Léautaud, Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal., 258 (2010), 2739-2778. doi: 10.1016/j.jfa.2009.10.011. Google Scholar

[24]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097. Google Scholar

[25]

G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., 141 (1998), 297-329. doi: 10.1007/s002050050078. Google Scholar

[26]

X. Li and J. Yong, Optimal Control Theory for Infinite-Dimensional Systems, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-4260-4. Google Scholar

[27]

F. Lin, Remarks on a backward parabolic problem, Methods Appl. Anal., 10 (2003), 245-252. doi: 10.4310/MAA.2003.v10.n2.a5. Google Scholar

[28]

Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators, ESAIM Control Optim. Calc. Var., 19 (2013), 255-273. doi: 10.1051/cocv/2012008. Google Scholar

[29]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1465-1485. doi: 10.3934/dcdsb.2010.14.1465. Google Scholar

[30]

L. Payne, Improperly Posed Problems in Partial Differential Equations, Regional Conference Series in Applied Mathematics, Vol. 22, SIAM, 1975. Google Scholar

[31]

K. D. Phung, Note on the cost of the approximate controllability for the heat equation with potential, J. Math. Anal. Appl., 295 (2004), 527-538. doi: 10.1016/j.jmaa.2004.03.059. Google Scholar

[32]

K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247. doi: 10.1016/j.jfa.2010.04.015. Google Scholar

[33]

K. D. Phung and G. Wang, An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc. (JEMS), 15 (2013), 681-703. doi: 10.4171/JEMS/371. Google Scholar

[34]

K. D. PhungG. Wang and Y. Xu, Impulse output rapid stabilization for heat equations, J. Differential Equations, 263 (2017), 5012-5041. doi: 10.1016/j.jde.2017.06.008. Google Scholar

[35]

K.D. PhungL. Wang and C. Zhang, Bang-bang property for time optimal control of semilinear heat equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 477-499. doi: 10.1016/j.anihpc.2013.04.005. Google Scholar

[36]

C. C. Poon, Unique continuation for parabolic equations, Comm. Partial Differential Equations, 21 (1996), 521-539. doi: 10.1080/03605309608821195. Google Scholar

[37]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153. doi: 10.1006/jfan.1999.3556. Google Scholar

[38]

S. Vessella, Unique continuation properties and quantitative estimates of unique continuation for parabolic equations, in Handbook of Differential Equations: Evolutionary Equations, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 5 (2009), 421-500. doi: 10.1016/S1874-5717(08)00212-0. Google Scholar

[39]

T. M. N. Vo, The local backward heat problem, preprint arXiv: 1704.05314.Google Scholar

[40]

G. Wang and C. Zhang, Observability inequalities from measurable sets for some abstract evolution equations, SIAM J. Control Optim., 55 (2017), 1862-1886. doi: 10.1137/15M1051907. Google Scholar

[41]

X. Yu and L. Zhang, The bang-bang property of time and norm optimal control problems for parabolic equations with time-varying fractional Laplacian, ESAIM: COCV. doi: 10.1051/cocv/2017075. Google Scholar

[42]

Y. Zhang, Unique continuation estimates for the Kolmogorov equation in the whole space, C. R. Math. Acad. Sci. Paris, 354 (2016), 389-393. doi: 10.1016/j.crma.2016.01.009. Google Scholar

show all references

References:
[1]

S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach Space, Comm. Pure Appl. Math., 16 (1963), 121-239. doi: 10.1002/cpa.3160160204. Google Scholar

[2]

J. ApraizL. EscauriazaG. Wang and C. Zhang, Observability inequalities and measurable sets, J. Eur. Math. Soc. (JEMS), 16 (2014), 2433-2475. doi: 10.4171/JEMS/490. Google Scholar

[3]

C. Bardos and K. D. Phung, Observation estimate for kinetic transport equations by diffusion approximation, C. R. Math. Acad. Sci. Paris, 355 (2017), 640-664. doi: 10.1016/j.crma.2017.04.017. Google Scholar

[4]

C. Bardos and L. Tartar, Sur l'unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. Rational Mech. Anal., 50 (1973), 10-25. doi: 10.1007/BF00251291. Google Scholar

[5]

A. Benabdallah and M. G. Naso, Null controllability of a thermoelastic plate, Abstr. Appl. Anal., 7 (2002), 585-599. doi: 10.1155/S108533750220408X. Google Scholar

[6]

F. Chaves-Silva and G. Lebeau, Spectral inequality and optimal cost of controllability for the Stokes system, ESAIM Control Optim. Calc. Var., 22 (2016), 1137-1162. doi: 10.1051/cocv/2016034. Google Scholar

[7]

L. EscauriazaF. J. Fernandez and S. Vessella, Doubling properties of caloric functions, Appl. Anal., 85 (2006), 205-223. doi: 10.1080/00036810500277082. Google Scholar

[8]

L. EscauriazaC. KenigG. Ponce and L. Vega, Convexity properties of solutions to the free Schrödinger equation with Gaussian decay, Math. Res. Lett., 15 (2008), 957-971. doi: 10.4310/MRL.2008.v15.n5.a10. Google Scholar

[9]

L. EscauriazaC. KenigG. Ponce and L. Vega, Hardy's uncertainty principle, convexity and Schrödinger evolutions, J. Eur. Math. Soc. (JEMS), 10 (2008), 883-907. doi: 10.4171/JEMS/134. Google Scholar

[10]

L. EscauriazaC. KenigG. Ponce and L. Vega, Hardy uncertainty principle, convexity and parabolic evolutions, Comm. Math. Phys., 346 (2016), 667-678. doi: 10.1007/s00220-015-2500-z. Google Scholar

[11]

L. EscauriazaS. Montaner and C. Zhang, Observation from measurable sets for parabolic analytic evolutions and applications, J. Math. Pures Appl., 104 (2015), 837-867. doi: 10.1016/j.matpur.2015.05.005. Google Scholar

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. Google Scholar

[13]

P. Gao, The Lebeau-Robbiano inequality for the one-dimensional fourth order elliptic operator and its application, ESAIM Control Optim. Calc. Var., 22 (2016), 811-831. doi: 10.1051/cocv/2015030. Google Scholar

[14]

A. Grigor'yan, Integral maximum principle and its applications, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 353-362. doi: 10.1017/S0308210500028511. Google Scholar

[15]

V. Isakov, Inverse Problems for Partial Differential Equations, Second Edition, Springer, New York, 2006. Google Scholar

[16]

D. Jerison and G. Lebeau, Nodal sets of sums of eigenfunctions, in Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996), Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, (1999), 223-239. Google Scholar

[17]

J. Le RousseauM. Léautaud and L. Robbiano, Controllability of a parabolic system with a diffuse interface, J. Eur. Math. Soc. (JEMS), 15 (2013), 1485-1574. doi: 10.4171/JEMS/397. Google Scholar

[18]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., 18 (2012), 712-747. doi: 10.1051/cocv/2011168. Google Scholar

[19]

J. Le Rousseau and I. Moyano, Null-controllability of the Kolmogorov equation in the whole phase space, J. Differential Equations, 260 (2016), 3193-3233. doi: 10.1016/j.jde.2015.09.062. Google Scholar

[20]

J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations, Arch. Ration. Mech. Anal., 195 (2010), 953-990. doi: 10.1007/s00205-009-0242-9. Google Scholar

[21]

J. Le Rousseau and L. Robbiano, Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces, Invent. Math., 183 (2011), 245-336. doi: 10.1007/s00222-010-0278-3. Google Scholar

[22]

J. Le Rousseau and L. Robbiano, Spectral inequality and resolvent estimate for the bi-Laplace operator, preprint, arXiv: 1509.02098.Google Scholar

[23]

M. Léautaud, Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal., 258 (2010), 2739-2778. doi: 10.1016/j.jfa.2009.10.011. Google Scholar

[24]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097. Google Scholar

[25]

G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., 141 (1998), 297-329. doi: 10.1007/s002050050078. Google Scholar

[26]

X. Li and J. Yong, Optimal Control Theory for Infinite-Dimensional Systems, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-4260-4. Google Scholar

[27]

F. Lin, Remarks on a backward parabolic problem, Methods Appl. Anal., 10 (2003), 245-252. doi: 10.4310/MAA.2003.v10.n2.a5. Google Scholar

[28]

Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators, ESAIM Control Optim. Calc. Var., 19 (2013), 255-273. doi: 10.1051/cocv/2012008. Google Scholar

[29]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1465-1485. doi: 10.3934/dcdsb.2010.14.1465. Google Scholar

[30]

L. Payne, Improperly Posed Problems in Partial Differential Equations, Regional Conference Series in Applied Mathematics, Vol. 22, SIAM, 1975. Google Scholar

[31]

K. D. Phung, Note on the cost of the approximate controllability for the heat equation with potential, J. Math. Anal. Appl., 295 (2004), 527-538. doi: 10.1016/j.jmaa.2004.03.059. Google Scholar

[32]

K. D. Phung and G. Wang, Quantitative unique continuation for the semilinear heat equation in a convex domain, J. Funct. Anal., 259 (2010), 1230-1247. doi: 10.1016/j.jfa.2010.04.015. Google Scholar

[33]

K. D. Phung and G. Wang, An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc. (JEMS), 15 (2013), 681-703. doi: 10.4171/JEMS/371. Google Scholar

[34]

K. D. PhungG. Wang and Y. Xu, Impulse output rapid stabilization for heat equations, J. Differential Equations, 263 (2017), 5012-5041. doi: 10.1016/j.jde.2017.06.008. Google Scholar

[35]

K.D. PhungL. Wang and C. Zhang, Bang-bang property for time optimal control of semilinear heat equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 477-499. doi: 10.1016/j.anihpc.2013.04.005. Google Scholar

[36]

C. C. Poon, Unique continuation for parabolic equations, Comm. Partial Differential Equations, 21 (1996), 521-539. doi: 10.1080/03605309608821195. Google Scholar

[37]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153. doi: 10.1006/jfan.1999.3556. Google Scholar

[38]

S. Vessella, Unique continuation properties and quantitative estimates of unique continuation for parabolic equations, in Handbook of Differential Equations: Evolutionary Equations, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 5 (2009), 421-500. doi: 10.1016/S1874-5717(08)00212-0. Google Scholar

[39]

T. M. N. Vo, The local backward heat problem, preprint arXiv: 1704.05314.Google Scholar

[40]

G. Wang and C. Zhang, Observability inequalities from measurable sets for some abstract evolution equations, SIAM J. Control Optim., 55 (2017), 1862-1886. doi: 10.1137/15M1051907. Google Scholar

[41]

X. Yu and L. Zhang, The bang-bang property of time and norm optimal control problems for parabolic equations with time-varying fractional Laplacian, ESAIM: COCV. doi: 10.1051/cocv/2017075. Google Scholar

[42]

Y. Zhang, Unique continuation estimates for the Kolmogorov equation in the whole space, C. R. Math. Acad. Sci. Paris, 354 (2016), 389-393. doi: 10.1016/j.crma.2016.01.009. Google Scholar

[1]

Chuanqiang Chen. On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4761-4811. doi: 10.3934/dcds.2016007

[2]

Chuanqiang Chen. On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3383-3402. doi: 10.3934/dcds.2014.34.3383

[3]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[4]

Kazuhiro Ishige, Paolo Salani. On a new kind of convexity for solutions of parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 851-864. doi: 10.3934/dcdss.2011.4.851

[5]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[6]

Maria Colombo, Gianluca Crippa, Stefano Spirito. Logarithmic estimates for continuity equations. Networks & Heterogeneous Media, 2016, 11 (2) : 301-311. doi: 10.3934/nhm.2016.11.301

[7]

David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335

[8]

Mehdi Badra. Global Carleman inequalities for Stokes and penalized Stokes equations. Mathematical Control & Related Fields, 2011, 1 (2) : 149-175. doi: 10.3934/mcrf.2011.1.149

[9]

Qing Liu, Atsushi Nakayasu. Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 157-183. doi: 10.3934/dcds.2019007

[10]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[11]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[12]

Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821

[13]

Roman Shvydkoy, Eitan Tadmor. Eulerian dynamics with a commutator forcing Ⅱ: Flocking. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5503-5520. doi: 10.3934/dcds.2017239

[14]

François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks & Heterogeneous Media, 2013, 8 (1) : 275-289. doi: 10.3934/nhm.2013.8.275

[15]

Victor Isakov. On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions. Inverse Problems & Imaging, 2019, 13 (5) : 983-1006. doi: 10.3934/ipi.2019044

[16]

Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations & Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023

[17]

Dongping Zhuang. Irrational stable commutator length in finitely presented groups. Journal of Modern Dynamics, 2008, 2 (3) : 499-507. doi: 10.3934/jmd.2008.2.499

[18]

Juraj Földes, Peter Poláčik. On asymptotically symmetric parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 673-689. doi: 10.3934/nhm.2012.7.673

[19]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Errata: Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2014, 3 (2) : 349-354. doi: 10.3934/eect.2014.3.349

[20]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2013, 2 (2) : 255-279. doi: 10.3934/eect.2013.2.255

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (36)
  • HTML views (297)
  • Cited by (0)

Other articles
by authors

[Back to Top]