September 2018, 8(3&4): 855-877. doi: 10.3934/mcrf.2018038

Minimization of the elliptic higher eigenvalues for multiphase anisotropic conductors

1. 

School of Mathematical Sciences, and LMNS, Fudan University, Shanghai 200433, China

2. 

School of Mathematical Sciences, and SCMS, Fudan University, Shanghai 200433, China

Dedicated to Professor Jiongmin Yong on the Occasion of His 60th Birthday

Received  August 2017 Revised  February 2018 Published  September 2018

Fund Project: This work was supported in part by NSFC Grant 11771097

Higher eigenvalues of composite materials for anisotropic conductors are considered. To get the existence result for minimizing problems, relaxed problems are introduced by the homogenization method. Then, necessary conditions for minimizers are yielded. Based on the necessary conditions, it is shown that in some cases, optimal conductivities of relaxed minimizing problems can be replaced equivalently by a weighted harmonic mean of conductivities.

Citation: Hongwei Lou, Xueyuan Yin. Minimization of the elliptic higher eigenvalues for multiphase anisotropic conductors. Mathematical Control & Related Fields, 2018, 8 (3&4) : 855-877. doi: 10.3934/mcrf.2018038
References:
[1]

G. Allaire, Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4684-9286-6.

[2]

G. AllaireS. Aubry and F. Jouve, Eigenfrequency optimization in optimal design, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3565-3579. doi: 10.1016/S0045-7825(00)00284-X.

[3]

J. Casado-Díaz, Smoothness properties for the optimal mixture of two isotropic materials: the compliance and eigenvalue problems, SIAM J. Control Optim., 53 (2015), 2319-2349. doi: 10.1137/140971087.

[4]

J. Casado-DíazJ. Couce-Calvo and J. D. Martín Gómez, Optimality conditions for nonconvex multistate control problems in the coefficients, SIAM J. Control Optim., 43 (2004), 216-239. doi: 10.1137/S0363012902411714.

[5]

R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, Inc., New York, N. Y., 1953.

[6]

S. Cox and R. Lipton, Extremal eigenvalue problems for two-phase conductors, Arch. Rational Mech. Anal., 136 (1996), 101-117. doi: 10.1007/BF02316974.

[7]

A. R. Díaz and N. Kikuchi, Solutions to shape and topology eigenvalue optimization problems using a homogenization method, Internat. J. Numer. Methods Engrg., 35 (1992), 1487-1502. doi: 10.1002/nme.1620350707.

[8]

G. A. Francfort and F. Murat, Optimal bounds for conduction in two-dimensional, twophase, anisotropic media, in Nonclassical Continuum Mechanics (Durham, 1986), London Math. Soc. Lecture Note Ser., 122, Cambridge Univ. Press, Cambridge, (1987), 197–212. doi: 10.1017/CBO9780511662911.013.

[9]

Y. Grabovsky, The G-closure of two well-ordered, anisotropic conductors, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 423-432. doi: 10.1017/S0308210500025816.

[10]

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7706-2.

[11]

S. Kesavan, Homogenization of elliptic eigenvalue problems. Ⅰ, Appl. Math. Optim., 5 (1979), 153-167. doi: 10.1007/BF01442551.

[12]

S. Kesavan, Homogenization of elliptic eigenvalue problems. Ⅱ, Appl. Math. Optim., 5 (1979), 197-216. doi: 10.1007/BF01442554.

[13]

B. Li and H. Lou, Cesari-type conditions for semilinear elliptic equation with leading term containing controls, Math. Control Relat. Fields, 1 (2011), 41-59. doi: 10.3934/mcrf.2011.1.41.

[14]

B. Li and H. Lou, Optimality conditions for semilinear hyperbolic equations with controls in coefficients, Appl. Math. Optim., 65 (2012), 371-402. doi: 10.1007/s00245-011-9160-y.

[15]

B. LiH. Lou and Y. Xu, Relaxation of optimal control problem governed by semilinear elliptic equation with leading term containing controls, Acta Appl. Math., 130 (2014), 205-236. doi: 10.1007/s10440-013-9843-2.

[16]

J. LiuL. CaoN. Yan and J. Cui, Multiscale approach for optimal design in conductivity of composite materials, SIAM J. Numer. Anal., 53 (2015), 1325-1349. doi: 10.1137/13094904X.

[17]

H. Lou, Optimality conditions for semilinear parabolic equations with controls in leading term, ESAIM Control Optim. Calc. Var., 17 (2011), 975-994. doi: 10.1051/cocv/2010034.

[18]

H. Lou and J. Yong, Optimality conditions for semilinear elliptic equations with leading term containing controls, SIAM J. Control Optim., 48 (2009), 2366-2387. doi: 10.1137/080740301.

[19]

H. Lou and J. Yong, Optimization of the principal eigenvalue for elliptic operators, preprint.

[20]

K. A. Lurie and A. V. Cherkaev, Exact estimates of the conductivity of a binary mixture of isotropic materials, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 21-38. doi: 10.1017/S0308210500019041.

[21]

Y. MaedaS. NishiwakiK. IzuiM. YoshimuraK. Matsui and K. Terada, Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes, Internat. J. Numer. Methods Engrg., 67 (2006), 597-628. doi: 10.1002/nme.1626.

[22]

F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl. (4), 112 (1977), 49-68. doi: 10.1007/BF02413475.

[23]

P. Pedregal, Weak limits in nonlinear conductivity, SIAM J. Math. Anal., 47 (2015), 1154-1168. doi: 10.1137/140960335.

[24]

S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, (Italian) Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 571–597; errata, ibid. (3), 22 (1968), 673.

[25]

L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, (1979), 136–212.

[26]

L. Tartar, Estimations fines des coefficients homogénéisés, (French) [Fine estimates of homogenized coefficients], in Ennio De Giorgi colloquium (Paris, 1983), Res. Notes in Math., 125, Pitman, Boston, MA, (1985), 168–187.

[27]

L. Tartar, An introduction to the homogenization method in optimal design, in Optimal shape design (Tróia, 1998), Lecture Notes in Math., 1740, Springer, Berlin, (2000), 47–156. doi: 10.1007/BFb0106742.

[28]

M. Vrdoljak, Classical optimal design in two-phase conductivity problems, SIAM J. Control Optim., 54 (2016), 2020-2035. doi: 10.1137/15M1049749.

show all references

References:
[1]

G. Allaire, Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4684-9286-6.

[2]

G. AllaireS. Aubry and F. Jouve, Eigenfrequency optimization in optimal design, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3565-3579. doi: 10.1016/S0045-7825(00)00284-X.

[3]

J. Casado-Díaz, Smoothness properties for the optimal mixture of two isotropic materials: the compliance and eigenvalue problems, SIAM J. Control Optim., 53 (2015), 2319-2349. doi: 10.1137/140971087.

[4]

J. Casado-DíazJ. Couce-Calvo and J. D. Martín Gómez, Optimality conditions for nonconvex multistate control problems in the coefficients, SIAM J. Control Optim., 43 (2004), 216-239. doi: 10.1137/S0363012902411714.

[5]

R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, Inc., New York, N. Y., 1953.

[6]

S. Cox and R. Lipton, Extremal eigenvalue problems for two-phase conductors, Arch. Rational Mech. Anal., 136 (1996), 101-117. doi: 10.1007/BF02316974.

[7]

A. R. Díaz and N. Kikuchi, Solutions to shape and topology eigenvalue optimization problems using a homogenization method, Internat. J. Numer. Methods Engrg., 35 (1992), 1487-1502. doi: 10.1002/nme.1620350707.

[8]

G. A. Francfort and F. Murat, Optimal bounds for conduction in two-dimensional, twophase, anisotropic media, in Nonclassical Continuum Mechanics (Durham, 1986), London Math. Soc. Lecture Note Ser., 122, Cambridge Univ. Press, Cambridge, (1987), 197–212. doi: 10.1017/CBO9780511662911.013.

[9]

Y. Grabovsky, The G-closure of two well-ordered, anisotropic conductors, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 423-432. doi: 10.1017/S0308210500025816.

[10]

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7706-2.

[11]

S. Kesavan, Homogenization of elliptic eigenvalue problems. Ⅰ, Appl. Math. Optim., 5 (1979), 153-167. doi: 10.1007/BF01442551.

[12]

S. Kesavan, Homogenization of elliptic eigenvalue problems. Ⅱ, Appl. Math. Optim., 5 (1979), 197-216. doi: 10.1007/BF01442554.

[13]

B. Li and H. Lou, Cesari-type conditions for semilinear elliptic equation with leading term containing controls, Math. Control Relat. Fields, 1 (2011), 41-59. doi: 10.3934/mcrf.2011.1.41.

[14]

B. Li and H. Lou, Optimality conditions for semilinear hyperbolic equations with controls in coefficients, Appl. Math. Optim., 65 (2012), 371-402. doi: 10.1007/s00245-011-9160-y.

[15]

B. LiH. Lou and Y. Xu, Relaxation of optimal control problem governed by semilinear elliptic equation with leading term containing controls, Acta Appl. Math., 130 (2014), 205-236. doi: 10.1007/s10440-013-9843-2.

[16]

J. LiuL. CaoN. Yan and J. Cui, Multiscale approach for optimal design in conductivity of composite materials, SIAM J. Numer. Anal., 53 (2015), 1325-1349. doi: 10.1137/13094904X.

[17]

H. Lou, Optimality conditions for semilinear parabolic equations with controls in leading term, ESAIM Control Optim. Calc. Var., 17 (2011), 975-994. doi: 10.1051/cocv/2010034.

[18]

H. Lou and J. Yong, Optimality conditions for semilinear elliptic equations with leading term containing controls, SIAM J. Control Optim., 48 (2009), 2366-2387. doi: 10.1137/080740301.

[19]

H. Lou and J. Yong, Optimization of the principal eigenvalue for elliptic operators, preprint.

[20]

K. A. Lurie and A. V. Cherkaev, Exact estimates of the conductivity of a binary mixture of isotropic materials, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 21-38. doi: 10.1017/S0308210500019041.

[21]

Y. MaedaS. NishiwakiK. IzuiM. YoshimuraK. Matsui and K. Terada, Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes, Internat. J. Numer. Methods Engrg., 67 (2006), 597-628. doi: 10.1002/nme.1626.

[22]

F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl. (4), 112 (1977), 49-68. doi: 10.1007/BF02413475.

[23]

P. Pedregal, Weak limits in nonlinear conductivity, SIAM J. Math. Anal., 47 (2015), 1154-1168. doi: 10.1137/140960335.

[24]

S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, (Italian) Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 571–597; errata, ibid. (3), 22 (1968), 673.

[25]

L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, (1979), 136–212.

[26]

L. Tartar, Estimations fines des coefficients homogénéisés, (French) [Fine estimates of homogenized coefficients], in Ennio De Giorgi colloquium (Paris, 1983), Res. Notes in Math., 125, Pitman, Boston, MA, (1985), 168–187.

[27]

L. Tartar, An introduction to the homogenization method in optimal design, in Optimal shape design (Tróia, 1998), Lecture Notes in Math., 1740, Springer, Berlin, (2000), 47–156. doi: 10.1007/BFb0106742.

[28]

M. Vrdoljak, Classical optimal design in two-phase conductivity problems, SIAM J. Control Optim., 54 (2016), 2020-2035. doi: 10.1137/15M1049749.

[1]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[2]

Stephen Campbell, Peter Kunkel. Solving higher index DAE optimal control problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 447-472. doi: 10.3934/naco.2016020

[3]

Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003

[4]

Yanqing Hu, Zaiming Liu, Jinbiao Wu. Optimal impulse control of a mean-reverting inventory with quadratic costs. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1685-1700. doi: 10.3934/jimo.2018027

[5]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[6]

Menita Carozza, Gioconda Moscariello, Antonia Passarelli. Higher integrability for minimizers of anisotropic functionals. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 43-55. doi: 10.3934/dcdsb.2009.11.43

[7]

Hongyong Deng, Wei Wei. Existence and stability analysis for nonlinear optimal control problems with $1$-mean equicontinuous controls. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1409-1422. doi: 10.3934/jimo.2015.11.1409

[8]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[9]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[10]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems & Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[11]

Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155

[12]

Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297

[13]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 185-203. doi: 10.3934/dcdsb.2016.21.185

[14]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[15]

Shenzhou Zheng, Xueliang Zheng, Zhaosheng Feng. Optimal regularity for $A$-harmonic type equations under the natural growth. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 669-685. doi: 10.3934/dcdsb.2011.16.669

[16]

Gershon Kresin, Vladimir Maz’ya. Optimal estimates for the gradient of harmonic functions in the multidimensional half-space. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 425-440. doi: 10.3934/dcds.2010.28.425

[17]

Geoffrey Beck, Sebastien Imperiale, Patrick Joly. Mathematical modelling of multi conductor cables. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 521-546. doi: 10.3934/dcdss.2015.8.521

[18]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2018, 14 (3) : 857-876. doi: 10.3934/jimo.2017079

[19]

Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks & Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699

[20]

Hoi Tin Kong, Qing Zhang. An optimal trading rule of a mean-reverting asset. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1403-1417. doi: 10.3934/dcdsb.2010.14.1403

2017 Impact Factor: 0.631

Article outline

[Back to Top]