• Previous Article
    Optimal control problems for some ordinary differential equations with behavior of blowup or quenching
  • MCRF Home
  • This Issue
  • Next Article
    Minimization of the elliptic higher eigenvalues for multiphase anisotropic conductors
September 2018, 8(3&4): 829-854. doi: 10.3934/mcrf.2018037

Controllability and observability of some coupled stochastic parabolic systems

1. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

2. 

Key Laboratory of Applied Statistics of MOE, School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

* Corresponding author: Xu Liu

Received  October 2017 Revised  May 2018 Published  September 2018

Fund Project: The second author is supported by the NSF of China under grant 11871142, by the Fok Ying Tong Education Foundation under grant 141001, and by the Shanghai Key Laboratory for Contemporary Applied Mathematics at the invitation of Professor Qi Zhang

This paper is devoted to a study of controllability and observability problems for some stochastic coupled linear parabolic systems only by one control and through an observer, respectively. In order to get a null controllability result, the Lebeau-Robbiano technique is adopted. The key point is to prove an observability inequality for certain stochastic coupled backward parabolic system by an iteration, when terminal values belong to a finite dimensional space. Different from deterministic systems, Kalman-type rank conditions for the controllability of stochastic coupled parabolic systems do not hold any more. Meanwhile, based on the Carleman estimates method, an observability inequality and unique continuation property for general stochastic linear coupled parabolic systems through an observer are derived.

Citation: Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037
References:
[1]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457. doi: 10.7153/dea-01-24.

[2]

F. Ammar-KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267.

[3]

V. BarbuA. Răscanu and G. Tessitore, Carleman estimate and controllability of linear stochastic heat equations, Appl. Math. Optim., 47 (2003), 97-120. doi: 10.1007/s00245-002-0757-z.

[4]

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.

[5]

X. Fu, Null controllability for the parabolic equation with a complex principal part, J. Funct. Anal., 257 (2009), 1333-1354. doi: 10.1016/j.jfa.2009.05.024.

[6]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series 34, Seoul National University, Seoul, Korea, 1996.

[7]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859.

[8]

N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, J. Sov. Math., 16 (1981), 1233-1277.

[9]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[10]

H. Li and Q. Lü, Null controllability for some systems of two backward stochastic heat equations with one control force, Chin. Ann. Math., 33 (2012), 909-918. doi: 10.1007/s11401-012-0743-y.

[11]

X. Liu, Controllability of some coupled stochastic parabolic systems with fractional order spatial differential operators by one control in the drift, SIAM J. Control Optim., 52 (2014), 836-860. doi: 10.1137/130926791.

[12]

X. Liu, Global Carleman estimate for stochastic parabolic equations, and its application, ESAIM: Control Optim. Calc. Var., 20 (2014), 823-839. doi: 10.1051/cocv/2013085.

[13]

Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators, ESAIM Control Optim. Calc. Var., 19 (2013), 255-273. doi: 10.1051/cocv/2012008.

[14]

Q. Lü, Some results on the controllability of forward stochastic heat equations with control on the drift, J. Funct. Anal., 260 (2011), 832-851. doi: 10.1016/j.jfa.2010.10.018.

[15]

G. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[16]

S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations, SIAM J. Control Optim., 48 (2009), 2191-2216. doi: 10.1137/050641508.

[17]

G. Wang, L-null controllability for the heat equation and its consequence for the time optimal control problem, SIAM J. Control Optim., 47 (2008), 1701-1720. doi: 10.1137/060678191.

[18]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, roceedings of the International Congress of Mathematicians, Hyderabad, India, 4 (2010), 3008-3034. doi: 10.1007/978-0-387-89488-1.

[19]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, in Handbook of Differential Equations: Evolutionary Differential Equations, Elsevier Science, 3 (2007), 527–621. doi: 10.1016/S1874-5717(07)80010-7.

show all references

References:
[1]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457. doi: 10.7153/dea-01-24.

[2]

F. Ammar-KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267.

[3]

V. BarbuA. Răscanu and G. Tessitore, Carleman estimate and controllability of linear stochastic heat equations, Appl. Math. Optim., 47 (2003), 97-120. doi: 10.1007/s00245-002-0757-z.

[4]

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.

[5]

X. Fu, Null controllability for the parabolic equation with a complex principal part, J. Funct. Anal., 257 (2009), 1333-1354. doi: 10.1016/j.jfa.2009.05.024.

[6]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series 34, Seoul National University, Seoul, Korea, 1996.

[7]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113. doi: 10.4171/PM/1859.

[8]

N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, J. Sov. Math., 16 (1981), 1233-1277.

[9]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[10]

H. Li and Q. Lü, Null controllability for some systems of two backward stochastic heat equations with one control force, Chin. Ann. Math., 33 (2012), 909-918. doi: 10.1007/s11401-012-0743-y.

[11]

X. Liu, Controllability of some coupled stochastic parabolic systems with fractional order spatial differential operators by one control in the drift, SIAM J. Control Optim., 52 (2014), 836-860. doi: 10.1137/130926791.

[12]

X. Liu, Global Carleman estimate for stochastic parabolic equations, and its application, ESAIM: Control Optim. Calc. Var., 20 (2014), 823-839. doi: 10.1051/cocv/2013085.

[13]

Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators, ESAIM Control Optim. Calc. Var., 19 (2013), 255-273. doi: 10.1051/cocv/2012008.

[14]

Q. Lü, Some results on the controllability of forward stochastic heat equations with control on the drift, J. Funct. Anal., 260 (2011), 832-851. doi: 10.1016/j.jfa.2010.10.018.

[15]

G. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[16]

S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations, SIAM J. Control Optim., 48 (2009), 2191-2216. doi: 10.1137/050641508.

[17]

G. Wang, L-null controllability for the heat equation and its consequence for the time optimal control problem, SIAM J. Control Optim., 47 (2008), 1701-1720. doi: 10.1137/060678191.

[18]

X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, roceedings of the International Congress of Mathematicians, Hyderabad, India, 4 (2010), 3008-3034. doi: 10.1007/978-0-387-89488-1.

[19]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, in Handbook of Differential Equations: Evolutionary Differential Equations, Elsevier Science, 3 (2007), 527–621. doi: 10.1016/S1874-5717(07)80010-7.

[1]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[2]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[3]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[4]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[5]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[6]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

[7]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[8]

Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control & Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143

[9]

Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699

[10]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[11]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[12]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[13]

Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040

[14]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[15]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[16]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[17]

Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743

[18]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[19]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[20]

Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665

2017 Impact Factor: 0.631

Article outline

[Back to Top]