September 2018, 8(3&4): 809-828. doi: 10.3934/mcrf.2018036

Optimal control problems for some ordinary differential equations with behavior of blowup or quenching

1. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

2. 

Mathematics & Science College, Shanghai Normal University, Shanghai 200234, China

* Corresponding author: Weihan Wang

Received  October 2017 Revised  January 2018 Published  September 2018

Fund Project: This work was supported in part by National Natural Science Foundation of China under grant 11701376 and 11471070, and School Foundation of Shanghai Normal University under grant SK201713

This paper is concerned with some optimal control problems for equations with blowup or quenching property. We first study the existence and Pontryagin's maximum principle for optimal controls which have the minimal energy among all the controls whose corresponding solutions blow up at the right-hand time end-point of a given functional. Then, the same problem for quenching case is discussed. Finally, we establish Pontryagin's maximum principle for optimal controls of extended problems after quenching.

Citation: Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036
References:
[1]

H. Amann and P. Quittner, Optimal control problems with final observation governed by explosive parabolic equations, SIAM J. Control Optim., 44 (2005), 1215-1238. doi: 10.1137/S0363012903433450.

[2]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473-486. doi: 10.1093/qmath/28.4.473.

[3]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22. doi: 10.1016/S0377-0427(98)00100-9.

[4]

E. N. Barron and W. Liu, Optimal control of the blowup time, SIAM J. Control Optim., 34 (1996), 102-123. doi: 10.1137/S0363012993245021.

[5]

C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math. Anal., 20 (1989), 558-566. doi: 10.1137/0520039.

[6]

M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, J. Differential Equations, 89 (1991), 176-202. doi: 10.1016/0022-0396(91)90118-S.

[7]

H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u + u1+α, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.

[8]

R. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z., 132 (1973), 183-203. doi: 10.1007/BF01213863.

[9]

J.-S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation, Proc. Edinburgh Math. Soc., 40 (1997), 437-456. doi: 10.1017/S0013091500023932.

[10]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18460-4.

[11]

H. Kawarada, On solutions of initial-boundary problem for ut = uxx + 1/(1 − u), Publ. Res. Inst. Math. Sci., 10 (1974/75), 729-736. doi: 10.2977/prims/1195191889.

[12]

X. Li and J. Yong, Optimal Control Theory for Infinite-dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.

[13]

P. Lin, Quenching time optimal control for some ordinary differential equations, J. Appl. Math., 2014 (2014), Art. ID 127809, 13 pages. doi: 10.1155/2014/127809.

[14]

P. Lin, Extendability and optimal control after quenching for some ordinary differential equations, J. Optim. Theory Appl., 168 (2016), 769-784. doi: 10.1007/s10957-015-0858-x.

[15]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105. doi: 10.1137/090764232.

[16]

P. Lin and G. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255. doi: 10.1016/j.matpur.2013.06.001.

[17]

J.-L. Lions, Contrôle des Systèmes Distribués Singuliers, (French) [Control of Singular Distributed Systems], Gauthier-Villars, Montrouge, 1983.

[18]

H. Lou and W. Wang, Optimal blowup time for controlled ordinary differential equations, ESAIM Control Optim. Calc. Var., 21 (2015), 815-834. doi: 10.1051/cocv/2014051.

[19]

H. Lou and W. Wang, Optimal blowup/quenching time for controlled autonomous ordinary differential equations, Math. Control Relat. Fields, 5 (2015), 517-527. doi: 10.3934/mcrf.2015.5.517.

[20]

H. LouJ. Wen and Y. Xu, Time optimal control problems for some non-smooth systems, Math. Control Relat. Fields, 4 (2014), 289-314. doi: 10.3934/mcrf.2014.4.289.

[21]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York-London, 1972.

show all references

References:
[1]

H. Amann and P. Quittner, Optimal control problems with final observation governed by explosive parabolic equations, SIAM J. Control Optim., 44 (2005), 1215-1238. doi: 10.1137/S0363012903433450.

[2]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473-486. doi: 10.1093/qmath/28.4.473.

[3]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22. doi: 10.1016/S0377-0427(98)00100-9.

[4]

E. N. Barron and W. Liu, Optimal control of the blowup time, SIAM J. Control Optim., 34 (1996), 102-123. doi: 10.1137/S0363012993245021.

[5]

C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math. Anal., 20 (1989), 558-566. doi: 10.1137/0520039.

[6]

M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, J. Differential Equations, 89 (1991), 176-202. doi: 10.1016/0022-0396(91)90118-S.

[7]

H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u + u1+α, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.

[8]

R. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z., 132 (1973), 183-203. doi: 10.1007/BF01213863.

[9]

J.-S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation, Proc. Edinburgh Math. Soc., 40 (1997), 437-456. doi: 10.1017/S0013091500023932.

[10]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18460-4.

[11]

H. Kawarada, On solutions of initial-boundary problem for ut = uxx + 1/(1 − u), Publ. Res. Inst. Math. Sci., 10 (1974/75), 729-736. doi: 10.2977/prims/1195191889.

[12]

X. Li and J. Yong, Optimal Control Theory for Infinite-dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.

[13]

P. Lin, Quenching time optimal control for some ordinary differential equations, J. Appl. Math., 2014 (2014), Art. ID 127809, 13 pages. doi: 10.1155/2014/127809.

[14]

P. Lin, Extendability and optimal control after quenching for some ordinary differential equations, J. Optim. Theory Appl., 168 (2016), 769-784. doi: 10.1007/s10957-015-0858-x.

[15]

P. Lin and G. Wang, Blowup time optimal control for ordinary differential equations, SIAM J. Control Optim., 49 (2011), 73-105. doi: 10.1137/090764232.

[16]

P. Lin and G. Wang, Some properties for blowup parabolic equations and their application, J. Math. Pures Appl., 101 (2014), 223-255. doi: 10.1016/j.matpur.2013.06.001.

[17]

J.-L. Lions, Contrôle des Systèmes Distribués Singuliers, (French) [Control of Singular Distributed Systems], Gauthier-Villars, Montrouge, 1983.

[18]

H. Lou and W. Wang, Optimal blowup time for controlled ordinary differential equations, ESAIM Control Optim. Calc. Var., 21 (2015), 815-834. doi: 10.1051/cocv/2014051.

[19]

H. Lou and W. Wang, Optimal blowup/quenching time for controlled autonomous ordinary differential equations, Math. Control Relat. Fields, 5 (2015), 517-527. doi: 10.3934/mcrf.2015.5.517.

[20]

H. LouJ. Wen and Y. Xu, Time optimal control problems for some non-smooth systems, Math. Control Relat. Fields, 4 (2014), 289-314. doi: 10.3934/mcrf.2014.4.289.

[21]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York-London, 1972.

[1]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[2]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[3]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[4]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[5]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[6]

Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365

[7]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[8]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[9]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[10]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[11]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[12]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[13]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[14]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[15]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[16]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[17]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[18]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[19]

Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018

[20]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

2017 Impact Factor: 0.631

Article outline

[Back to Top]