# American Institute of Mathematical Sciences

• Previous Article
Feedback stabilization with one simultaneous control for systems of parabolic equations
• MCRF Home
• This Issue
• Next Article
Optimal control problems for some ordinary differential equations with behavior of blowup or quenching
September 2018, 8(3&4): 789-808. doi: 10.3934/mcrf.2018035

## Weak stability of a laminated beam

 1 College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China 2 Department of Mathematics and Statistics, University of Minnesota, Duluth, MN 55812, USA 3 College of Information Science and Technology, Donghua University, School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China

* Corresponding authorr: Yang Wan

Received  October 2017 Revised  May 2018 Published  September 2018

In this paper, we consider the stability of a laminated beam equation, derived by Liu, Trogdon, and Yong [6], subject to viscous or Kelvin-Voigt damping. The model is a coupled system of two wave equations and one Euler-Bernoulli beam equation, which describes the longitudinal motion of the top and bottom layers of the beam and the transverse motion of the beam. We first show that the system is unstable if one damping is only imposed on the beam equation. On the other hand, it is easy to see that the system is exponentially stable if direct damping are imposed on all three equations. Hence, we investigate the system stability when two of the three equations are directly damped. There are a total of seven cases from the combination of damping locations and types. Polynomial stability of different orders and their optimality are proved. Several interesting properties are revealed.

Citation: Yanfang Li, Zhuangyi Liu, Yang Wang. Weak stability of a laminated beam. Mathematical Control & Related Fields, 2018, 8 (3&4) : 789-808. doi: 10.3934/mcrf.2018035
##### References:
 [1] A. A. Allen and S. W. Hansen, Analyticity of a multilayer Mead-Markus plate, Nonliear Anal., 71 (2009), e1835-e1842. doi: 10.1016/j.na.2009.02.063. [2] A. A. Allen and S. W. Hansen, Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam, Discrete Contin. Dyn. Syst. Ser. B., 14 (2010), 1279-1292. doi: 10.3934/dcdsb.2010.14.1279. [3] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0. [4] S. W. Hansen and Z. Liu, Analyticity of semigroup associated with a laminated composite beam, Control of Distributed Parameter and Stochastic Systems (Hangzhou, 1998), Kluwer Acad. Publ., Boston, MA, 1999, 47–54. [5] S. W. Hansen and R. Spies, Structural damping in a laminated beam due to interfacial slip, J. Sound and Vibration, 204 (1997), 183-202. doi: 10.1006/jsvi.1996.0913. [6] Z. Liu, S. A. Trogdon and J. Yong, Modeling and analysis of a laminated beam, Math. Comput. Modeling, 30 (1999), 149-167. doi: 10.1016/S0895-7177(99)00122-3. [7] Z. Liu and S. Zheng, Semigroup Associated with Dissipative System, Res. Notes Math., Vol 394, Chapman & Hall/CRC, Boca Raton, 1999. [8] D. J. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vibr.(2), 10 (1969), 163-175. doi: 10.1016/0022-460X(69)90193-X. [9] A. Özkan Özer and S. W. Hansen, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evol. Equ. Control Theorey, 2 (2013), 695-710. doi: 10.3934/eect.2013.2.695. [10] Y. V. K. S Rao and B. C. Nakra, Vibrations of unsymmetrical sanwich beams and plates with viscoelastic cores, J. Sound Vibr.(3), 34 (1974), 309-326. [11] C. A. Raposo, Exponential stability of a structure with interfacial slip and frictional damping, Applied Math. Letter, 53 (2016), 85-91. doi: 10.1016/j.aml.2015.10.005. [12] J. M. Wang, G. Q. Xu and S. P. Yung, Stabilization of laminated beams with structural damping by boundary feedback controls, SIAM Control Optim., 44 (2005), 1575-1597. doi: 10.1137/040610003. [13] M. J. Yan and E. H. Dowell, Governing equations for vibratory constrained-layer damping sandwich plates and beams, J. Appl. Mech.(4), 39 (1972), 1041-1046.

show all references

##### References:
 [1] A. A. Allen and S. W. Hansen, Analyticity of a multilayer Mead-Markus plate, Nonliear Anal., 71 (2009), e1835-e1842. doi: 10.1016/j.na.2009.02.063. [2] A. A. Allen and S. W. Hansen, Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam, Discrete Contin. Dyn. Syst. Ser. B., 14 (2010), 1279-1292. doi: 10.3934/dcdsb.2010.14.1279. [3] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0. [4] S. W. Hansen and Z. Liu, Analyticity of semigroup associated with a laminated composite beam, Control of Distributed Parameter and Stochastic Systems (Hangzhou, 1998), Kluwer Acad. Publ., Boston, MA, 1999, 47–54. [5] S. W. Hansen and R. Spies, Structural damping in a laminated beam due to interfacial slip, J. Sound and Vibration, 204 (1997), 183-202. doi: 10.1006/jsvi.1996.0913. [6] Z. Liu, S. A. Trogdon and J. Yong, Modeling and analysis of a laminated beam, Math. Comput. Modeling, 30 (1999), 149-167. doi: 10.1016/S0895-7177(99)00122-3. [7] Z. Liu and S. Zheng, Semigroup Associated with Dissipative System, Res. Notes Math., Vol 394, Chapman & Hall/CRC, Boca Raton, 1999. [8] D. J. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vibr.(2), 10 (1969), 163-175. doi: 10.1016/0022-460X(69)90193-X. [9] A. Özkan Özer and S. W. Hansen, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evol. Equ. Control Theorey, 2 (2013), 695-710. doi: 10.3934/eect.2013.2.695. [10] Y. V. K. S Rao and B. C. Nakra, Vibrations of unsymmetrical sanwich beams and plates with viscoelastic cores, J. Sound Vibr.(3), 34 (1974), 309-326. [11] C. A. Raposo, Exponential stability of a structure with interfacial slip and frictional damping, Applied Math. Letter, 53 (2016), 85-91. doi: 10.1016/j.aml.2015.10.005. [12] J. M. Wang, G. Q. Xu and S. P. Yung, Stabilization of laminated beams with structural damping by boundary feedback controls, SIAM Control Optim., 44 (2005), 1575-1597. doi: 10.1137/040610003. [13] M. J. Yan and E. H. Dowell, Governing equations for vibratory constrained-layer damping sandwich plates and beams, J. Appl. Mech.(4), 39 (1972), 1041-1046.
 [1] Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721 [2] Qiong Zhang. Exponential stability of a joint-leg-beam system with memory damping. Mathematical Control & Related Fields, 2015, 5 (2) : 321-333. doi: 10.3934/mcrf.2015.5.321 [3] Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations & Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21 [4] Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1 [5] Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110 [6] Xun-Yang Wang, Khalid Hattaf, Hai-Feng Huo, Hong Xiang. Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1267-1285. doi: 10.3934/jimo.2016.12.1267 [7] Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219 [8] Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257 [9] Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424 [10] Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447 [11] Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673 [12] Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657 [13] Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations & Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003 [14] István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773 [15] Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks & Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008 [16] M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure & Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743 [17] Cónall Kelly, Alexandra Rodkina. Constrained stability and instability of polynomial difference equations with state-dependent noise. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 913-933. doi: 10.3934/dcdsb.2009.11.913 [18] Reza Kamyar, Matthew M. Peet. Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2383-2417. doi: 10.3934/dcdsb.2015.20.2383 [19] Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 [20] Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

2017 Impact Factor: 0.631

Article outline